IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i7p1045-d859316.html
   My bibliography  Save this article

Systematicity and Stability Analysis of Land Use Change—Taking Jinan, China, as an Example

Author

Listed:
  • Kun Zhou

    (School of Land Science and Technology, China University of Geosciences, Beijing 100083, China)

  • Xinyi Wang

    (School of Land Science and Technology, China University of Geosciences, Beijing 100083, China)

  • Zhihan Wang

    (School of Land Science and Technology, China University of Geosciences, Beijing 100083, China)

  • Yecui Hu

    (School of Land Science and Technology, China University of Geosciences, Beijing 100083, China)

Abstract

The study of the systematic stability of land use change is essential for regulating land use results and layout. This article took Jinan, China, as an example, and used the land transfer matrix to calculate the changing area and intensity based on remote sensing image maps and land use status maps, and then used the intensity analysis method to compare the changing intensity with the average intensity at three levels: interval level, land category level, and transition level. The systematicity and stability of land use changes from 2005 to 2018 in Jinan were analyzed using intensity analysis. The results showed that the intensity of land use change in Jinan led to a rapid change pattern from 2005 to 2010 and a slow change pattern from 2010 to 2018. The occupation of cultivated land by construction land in Jinan showed high activity, while the transition process of cultivated land to construction land and other land categories showed a steady, systematic change pattern, other land categories showed different trends and intensities of change, and the transition of forest land and other land categories showed stability in time scale. The results showed that the changes in construction land were mainly due to external influences, showing a systematic non-steady change pattern.

Suggested Citation

  • Kun Zhou & Xinyi Wang & Zhihan Wang & Yecui Hu, 2022. "Systematicity and Stability Analysis of Land Use Change—Taking Jinan, China, as an Example," Land, MDPI, vol. 11(7), pages 1-18, July.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:7:p:1045-:d:859316
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/7/1045/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/7/1045/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Gilmore Pontius & Yan Gao & Nicholas M. Giner & Takashi Kohyama & Mitsuru Osaki & Kazuyo Hirose, 2013. "Design and Interpretation of Intensity Analysis Illustrated by Land Change in Central Kalimantan, Indonesia," Land, MDPI, vol. 2(3), pages 1-19, July.
    2. Margaret Gitau & Nathaniel Bailey, 2012. "Multi-Layer Assessment of Land Use and Related Changes for Decision Support in a Coastal Zone Watershed," Land, MDPI, vol. 1(1), pages 1-27, December.
    3. Robert Pontius & Wideke Boersma & Jean-Christophe Castella & Keith Clarke & Ton Nijs & Charles Dietzel & Zengqiang Duan & Eric Fotsing & Noah Goldstein & Kasper Kok & Eric Koomen & Christopher Lippitt, 2008. "Comparing the input, output, and validation maps for several models of land change," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 11-37, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoqing Cui & Wenlong Zheng & Siliang Chen & Yue Dong & Tingyu Huang, 2022. "Study on the Spatial Pattern Characteristics and Influencing Factors of Inefficient Urban Land Use in the Yellow River Basin," Land, MDPI, vol. 11(9), pages 1-24, September.
    2. Jianhui Dong & Wenju Yun & Kening Wu & Shaoshuai Li & Bingrui Liu & Qiaoyuan Lu, 2023. "Spatio-Temporal Analysis of Cultivated Land from 2010 to 2020 in Long’an County, Karst Region, China," Land, MDPI, vol. 12(2), pages 1-22, February.
    3. Xi Zhou & Maohua Ma & Qiao Chen & Wanyu Qi & Yuyao Gao & Jianzhao Cui, 2022. "Uneven Distribution of Ecosystem Services along the Yarlung Zangbo River Basin in Tibet Reveals the Quest for Multi-Target Policies of Rural Development in Less-Favored Areas," Land, MDPI, vol. 11(11), pages 1-14, November.
    4. Haobei Liu & Qi Wang & Na Liu & Hengrui Zhang & Yifei Tan & Zhe Zhang, 2023. "The Impact of Land Use/Cover Change on Ecological Environment Quality and Its Spatial Spillover Effect under the Coupling Effect of Urban Expansion and Open-Pit Mining Activities," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    5. Zijuan Zhu & Zengxiang Zhang & Xiaoli Zhao & Lijun Zuo & Xiao Wang, 2022. "Characteristics of Land Use Change in China before and after 2000," Sustainability, MDPI, vol. 14(21), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siqin Tong & Zhenhua Dong & Jiquan Zhang & Yongbin Bao & Ari Guna & Yuhai Bao, 2018. "Spatiotemporal Variations of Land Use/Cover Changes in Inner Mongolia (China) during 1980–2015," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
    2. Yongjiu Feng & Jiafeng Wang & Xiaohua Tong & Yang Liu & Zhenkun Lei & Chen Gao & Shurui Chen, 2018. "The Effect of Observation Scale on Urban Growth Simulation Using Particle Swarm Optimization-Based CA Models," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    3. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    4. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    5. Aritta Suwarno & Meine van Noordwijk & Hans-Peter Weikard & Desi Suyamto, 2018. "Indonesia’s forest conversion moratorium assessed with an agent-based model of Land-Use Change and Ecosystem Services (LUCES)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(2), pages 211-229, February.
    6. Yuanyuan Yang & Shuwen Zhang & Jiuchun Yang & Xiaoshi Xing & Dongyan Wang, 2015. "Using a Cellular Automata-Markov Model to Reconstruct Spatial Land-Use Patterns in Zhenlai County, Northeast China," Energies, MDPI, vol. 8(5), pages 1-21, May.
    7. Bonoua Faye & Guoming Du & Edmée Mbaye & Chang’an Liang & Tidiane Sané & Ruhao Xue, 2023. "Assessing the Spatial Agricultural Land Use Transition in Thiès Region, Senegal, and Its Potential Driving Factors," Land, MDPI, vol. 12(4), pages 1-20, March.
    8. Rifat, Shaikh Abdullah Al & Liu, Weibo, 2022. "Predicting future urban growth scenarios and potential urban flood exposure using Artificial Neural Network-Markov Chain model in Miami Metropolitan Area," Land Use Policy, Elsevier, vol. 114(C).
    9. Zhiwei Deng & Bin Quan, 2022. "Intensity Characteristics and Multi-Scenario Projection of Land Use and Land Cover Change in Hengyang, China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    10. Jing Yang & Feng Shi & Yizhong Sun & Jie Zhu, 2019. "A Cellular Automata Model Constrained by Spatiotemporal Heterogeneity of the Urban Development Strategy for Simulating Land-use Change: A Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(15), pages 1-19, July.
    11. Brian Pickard & Joshua Gray & Ross Meentemeyer, 2017. "Comparing Quantity, Allocation and Configuration Accuracy of Multiple Land Change Models," Land, MDPI, vol. 6(3), pages 1-21, August.
    12. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    13. Syed Amir Manzoor & Geoffrey Hugh Griffiths & Elizabeth Robinson & Kikuko Shoyama & Martin Lukac, 2022. "Linking Pattern to Process: Intensity Analysis of Land-Change Dynamics in Ghana as Correlated to Past Socioeconomic and Policy Contexts," Land, MDPI, vol. 11(7), pages 1-16, July.
    14. Zhang, Yan & Chang, Xia & Liu, Yanfang & Lu, Yanchi & Wang, Yiheng & Liu, Yaolin, 2021. "Urban expansion simulation under constraint of multiple ecosystem services (MESs) based on cellular automata (CA)-Markov model: Scenario analysis and policy implications," Land Use Policy, Elsevier, vol. 108(C).
    15. Margaret Gitau & Nathaniel Bailey, 2012. "Multi-Layer Assessment of Land Use and Related Changes for Decision Support in a Coastal Zone Watershed," Land, MDPI, vol. 1(1), pages 1-27, December.
    16. Xiaoli Hu & Xin Li & Ling Lu, 2018. "Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    17. Yaya Jin & Jiahe Ding & Yue Chen & Chaozheng Zhang & Xianhui Hou & Qianqian Zhang & Qiankun Liu, 2023. "Urban Land Expansion Simulation Considering the Increasing versus Decreasing Balance Policy: A Case Study in Fenghua, China," Land, MDPI, vol. 12(12), pages 1-21, November.
    18. Charlotte Shade & Peleg Kremer, 2019. "Predicting Land Use Changes in Philadelphia Following Green Infrastructure Policies," Land, MDPI, vol. 8(2), pages 1-19, February.
    19. repec:ris:cieodp:2013_019 is not listed on IDEAS
    20. Wu, Wei & Yeager, Kevin M. & Peterson, Mark S. & Fulford, Richard S., 2015. "Neutral models as a way to evaluate the Sea Level Affecting Marshes Model (SLAMM)," Ecological Modelling, Elsevier, vol. 303(C), pages 55-69.
    21. Robert Gilmore Pontius, 2018. "Criteria to Confirm Models that Simulate Deforestation and Carbon Disturbance," Land, MDPI, vol. 7(3), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:7:p:1045-:d:859316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.