IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i10p4313-d1652513.html
   My bibliography  Save this article

Optimal Overhang Depths in the Mediterranean Basin: Climate Subtypes and Envelope Retrofitting Impacts for Bioclimatic Sustainable Buildings

Author

Listed:
  • Cristina Troisi

    (Independent Researcher, 10124 Turin, Italy)

  • Giacomo Chiesa

    (Department of Architecture and Design, Politecnico di Torino, 10125 Turin, Italy)

Abstract

This paper introduces an innovative, environmentally sustainable, and climatic study analysing the impact of overhang depths on heating and cooling building energy demands in the Mediterranean Basin via dynamic energy simulations of a south-oriented reference residential building zone. The adopted bioclimatic approach aims at increasing building sustainability and suggests, for representative Köppen–Geiger climate subtypes, optimal overhang depths and climate-correlated depth domains. The definition of a large geoclimatic study based on 80 locations and the classification of results based on climate subtypes are two novelties introduced in this work. From the energy point of view, overhangs can reduce local building cooling needs by, on average, 27%, while decreasing the total final energy needs (Q TOT ) by 17%. A new approach is also introduced: comparing the energy reduction due to the addition of an overhang to commonly applied envelope retrofitting solutions, such as wall insulation or window substitutions. Overhangs show great potential in sites with arid climate subtypes and are more effective than other solutions in several locations. This study underlines the need to increase the adoption of passive cooling solutions by local retrofitting regulations in places with a Mediterranean climate, following a bio-regionalist approach able to increase the local buildings’ sustainable development.

Suggested Citation

  • Cristina Troisi & Giacomo Chiesa, 2025. "Optimal Overhang Depths in the Mediterranean Basin: Climate Subtypes and Envelope Retrofitting Impacts for Bioclimatic Sustainable Buildings," Sustainability, MDPI, vol. 17(10), pages 1-29, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4313-:d:1652513
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/10/4313/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/10/4313/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giacomo Chiesa & Francesca Fasano & Paolo Grasso, 2021. "A New Tool for Building Energy Optimization: First Round of Successful Dynamic Model Simulations," Energies, MDPI, vol. 14(19), pages 1-20, October.
    2. Konstantoglou, Maria & Tsangrassoulis, Aris, 2016. "Dynamic operation of daylighting and shading systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 268-283.
    3. de Almeida Rocha, Ana Paula & Reynoso-Meza, Gilberto & Oliveira, Ricardo C.L.F. & Mendes, Nathan, 2020. "A pixel counting based method for designing shading devices in buildings considering energy efficiency, daylight use and fading protection," Applied Energy, Elsevier, vol. 262(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonis Kontadakis & Aris Tsangrassoulis & Lambros Doulos & Stelios Zerefos, 2017. "A Review of Light Shelf Designs for Daylit Environments," Sustainability, MDPI, vol. 10(1), pages 1-24, December.
    2. Hassan Bazazzadeh & Barbara Świt-Jankowska & Nasim Fazeli & Adam Nadolny & Behnaz Safar ali najar & Seyedeh sara Hashemi safaei & Mohammadjavad Mahdavinejad, 2021. "Efficient Shading Device as an Important Part of Daylightophil Architecture; a Designerly Framework of High-Performance Architecture for an Office Building in Tehran," Energies, MDPI, vol. 14(24), pages 1-26, December.
    3. Krarti, Moncef, 2023. "Optimal energy performance of dynamic sliding and insulated shades for residential buildings," Energy, Elsevier, vol. 263(PB).
    4. Krarti, Moncef, 2021. "Impact of PV integrated rotating overhangs for US residential buildings," Renewable Energy, Elsevier, vol. 174(C), pages 835-849.
    5. Martin, Rit & Arthur, Thomas & Jonathan, Villot & Mathieu, Thorel & Enora, Garreau & Robin, Girard, 2024. "SHAPE: A temporal optimization model for residential buildings retrofit to discuss policy objectives," Applied Energy, Elsevier, vol. 361(C).
    6. Taesub Lim & Daeung Danny Kim, 2022. "Thermal Comfort Assessment of the Perimeter Zones by Using CFD Simulation," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    7. Guipan Wang & Ying Yu & Chenfei Zhang, 2024. "Optimization Control Strategy for Transition Season Blinds Balancing Daylighting, Thermal Discomfort, and Energy Efficiency," Energies, MDPI, vol. 17(7), pages 1-21, March.
    8. Bushra, Nayab, 2022. "A comprehensive analysis of parametric design approaches for solar integration with buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Krarti, Moncef, 2025. "Evaluation of energy performance for rotating residential buildings integrated with rooftop PV systems," Applied Energy, Elsevier, vol. 383(C).
    10. Novelli, Nick & Phillips, Kenton & Shultz, Justin & Derby, Melanie M. & Salvas, Ryan & Craft, Jesse & Stark, Peter & Jensen, Michael & Derby, Stephen & Dyson, Anna, 2021. "Experimental investigation of a building-integrated, transparent, concentrating photovoltaic and thermal collector," Renewable Energy, Elsevier, vol. 176(C), pages 617-634.
    11. Daniel Plörer & Sascha Hammes & Martin Hauer & Vincent van Karsbergen & Rainer Pfluger, 2021. "Control Strategies for Daylight and Artificial Lighting in Office Buildings—A Bibliometrically Assisted Review," Energies, MDPI, vol. 14(13), pages 1-18, June.
    12. Zeng, Zhaoyun & Augenbroe, Godfried & Chen, Jianli, 2022. "Realization of bi-level optimization of adaptive building envelope with a finite-difference model featuring short execution time and versatility," Energy, Elsevier, vol. 243(C).
    13. Eltaweel, Ahmad & SU, Yuehong, 2017. "Parametric design and daylighting: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1086-1103.
    14. Kotarela, Faidra & Kyritsis, Anastasios & Agathokleous, Rafaela & Papanikolaou, Nick, 2023. "On the exploitation of dynamic simulations for the design of buildings energy systems," Energy, Elsevier, vol. 271(C).
    15. Pinto, Maria Cristina & Crespi, Giulia & Dell'Anna, Federico & Becchio, Cristina, 2023. "Combining energy dynamic simulation and multi-criteria analysis for supporting investment decisions on smart shading devices in office buildings," Applied Energy, Elsevier, vol. 332(C).
    16. Krarti, Moncef, 2021. "Evaluation of PV integrated sliding-rotating overhangs for US apartment buildings," Applied Energy, Elsevier, vol. 293(C).
    17. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    18. Flor, Jan-Frederik & Liu, Dingming & Sun, Yanyi & Beccarelli, Paolo & Chilton, John & Wu, Yupeng, 2018. "Optical aspects and energy performance of switchable ethylene-tetrafluoroethylene (ETFE) foil cushions," Applied Energy, Elsevier, vol. 229(C), pages 335-351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4313-:d:1652513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.