IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i10p4249-d1651217.html
   My bibliography  Save this article

Lotka–Volterra Dynamics and Sustainable Regulation of Agroecosystems: Coupled Framework of Monte Carlo Simulation and Multi-Objective Optimisation

Author

Listed:
  • Zhiyuan Zhou

    (National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Yangtze University, Wuhan 430100, China)

  • Peng Lin

    (National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Yangtze University, Wuhan 430100, China)

  • Tianqi Gao

    (National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Yangtze University, Wuhan 430100, China)

  • Congjie Tan

    (National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Yangtze University, Wuhan 430100, China)

  • Kai Wei

    (National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Yangtze University, Wuhan 430100, China)

  • Liangzhu Yan

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
    China National Petroleum Corporation (CNPC) Chuanqing Drilling Engineering Company Limited, Chengdu 610051, China)

Abstract

Addressing the dual challenges of agricultural productivity and ecological sustainability, this study develops an integrated framework combining Lotka–Volterra dynamics, Monte Carlo simulation, and multi-objective optimisation to quantify agroecosystem responses under anthropogenic interventions. Key innovations include the incorporation of carbon sequestration dynamics and low-carbon agricultural practices into ecological–economic trade-off analysis. Our findings demonstrate the following: (1) Seasonal carbon fertilisation effects enhance producer growth by up to 30%, while energy recycling from consumer mortality offsets 22% of pesticide-induced carbon emissions. (2) The strategic introduction of dual-function species synergistically improves carbon sink capacity by 18–25% through enhanced producer efficiency and reduced chemical reliance. (3) Multi-objective optimisation reveals that integrated pest management coupled with organic amendments achieves a 51.2% net benefit improvement, while reducing agrochemical carbon footprints by 40–55%. The proposed framework bridges critical gaps in sustainable agriculture by simultaneously addressing yield stability, biodiversity conservation, and climate mitigation imperatives. This work advances the dynamic modelling of agroecosystems through probabilistic risk assessment and carbon-aware decision-making, providing actionable pathways for low-carbon agricultural intensification.

Suggested Citation

  • Zhiyuan Zhou & Peng Lin & Tianqi Gao & Congjie Tan & Kai Wei & Liangzhu Yan, 2025. "Lotka–Volterra Dynamics and Sustainable Regulation of Agroecosystems: Coupled Framework of Monte Carlo Simulation and Multi-Objective Optimisation," Sustainability, MDPI, vol. 17(10), pages 1-25, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4249-:d:1651217
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/10/4249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/10/4249/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Lal, 2007. "Carbon Management in Agricultural Soils," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(2), pages 303-322, February.
    2. Yanju Song & Min Liu, 2025. "Empowering Sustainable Farming: Harnessing Digital Technology for Green and Low-Carbon Agricultural Practices," Sustainability, MDPI, vol. 17(4), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giedrius Dabašinskas & Gintarė Sujetovienė, 2024. "Spatial and Temporal Changes in Supply and Demand for Ecosystem Services in Response to Urbanization: A Case Study in Vilnius, Lithuania," Land, MDPI, vol. 13(4), pages 1-15, April.
    2. Xiaochen Liu & Shuai Wang & Qianlai Zhuang & Xinxin Jin & Zhenxing Bian & Mingyi Zhou & Zhuo Meng & Chunlan Han & Xiaoyu Guo & Wenjuan Jin & Yufei Zhang, 2022. "A Review on Carbon Source and Sink in Arable Land Ecosystems," Land, MDPI, vol. 11(4), pages 1-17, April.
    3. Wawrzyniec Czubak & Jagoda Zmyślona, 2024. "Possibilities of Changes in Energy Intensity of Production Depending on the Scale of Farm Investments in a Polish Region," Energies, MDPI, vol. 17(18), pages 1-14, September.
    4. Timothy Capon & Michael Harris & Andrew Reeson, 2013. "The Design of Markets for Soil Carbon Sequestration," Economic Papers, The Economic Society of Australia, vol. 32(2), pages 161-173, June.
    5. Ismail Abd-Elaty & Hanan Shoshah & Martina Zeleňáková & Nand Lal Kushwaha & Osama W. El-Dean, 2022. "Forecasting of Flash Floods Peak Flow for Environmental Hazards and Water Harvesting in Desert Area of El-Qaa Plain, Sinai," IJERPH, MDPI, vol. 19(10), pages 1-12, May.
    6. Zhang, Guo & Wang, Xiaoke & Sun, Binfeng & Zhao, Hong & Lu, Fei & Zhang, Lu, 2016. "Status of mineral nitrogen fertilization and net mitigation potential of the state fertilization recommendation in Chinese cropland," Agricultural Systems, Elsevier, vol. 146(C), pages 1-10.
    7. Lakshmanan Muralikrishnan & Rabindra N. Padaria & Anil K. Choudhary & Anchal Dass & Shadi Shokralla & Tarek K. Zin El-Abedin & Shadi A. M. Abdelmohsen & Eman A. Mahmoud & Hosam O. Elansary, 2021. "Climate Change-Induced Drought Impacts, Adaptation and Mitigation Measures in Semi-Arid Pastoral and Agricultural Watersheds," Sustainability, MDPI, vol. 14(1), pages 1-18, December.
    8. Martina Lori & Sarah Symnaczik & Paul Mäder & Gerlinde De Deyn & Andreas Gattinger, 2017. "Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-25, July.
    9. Yamei Wang & Shuhe Zhao & Wenting Cai & Joon Heo & Fanchen Peng, 2019. "A Sensitive Band to Optimize Winter Wheat Crop Residue Cover Estimation by Eliminating Moisture Effect," Sustainability, MDPI, vol. 11(11), pages 1-18, May.
    10. Xixian Zheng & Haixia Tan & Wenmei Liao, 2025. "Spatiotemporal evolution of factors affecting agricultural carbon emissions: empirical evidence from 31 Chinese provinces," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(5), pages 10909-10943, May.
    11. Lin, Fei & Li, Jisheng & Wu, Chen, 2025. "Social networks, environmental literacy, and farmers' clean low-carbon farming behaviors: Evidence from villages in China," Ecological Economics, Elsevier, vol. 228(C).
    12. Ewa Mackiewicz-Walec & Piotr Jarosław Żarczyński & Sławomir Józef Krzebietke & Katarzyna Żarczyńska, 2024. "Smooth Brome ( Bromus inermis L.)—A Versatile Grass: A Review," Agriculture, MDPI, vol. 14(6), pages 1-17, May.
    13. Xiangcheng Ma & Mengfan Lv & Fangyuan Huang & Peng Zhang & Tie Cai & Zhikuan Jia, 2022. "Effects of Biochar Application on Soil Hydrothermal Environment, Carbon Emissions, and Crop Yield in Wheat Fields under Ridge–Furrow Rainwater Harvesting Planting Mode," Agriculture, MDPI, vol. 12(10), pages 1-19, October.
    14. Gerald Jandl & Wakene Negassa & Kai-Uwe Eckhardt & Peter Leinweber, 2023. "Peat Formation in Rewetted Fens as Reflected by Saturated n -Alkyl Acid Concentrations and Patterns," Land, MDPI, vol. 12(9), pages 1-11, September.
    15. Jakub Bekier & Elżbieta Jamroz & Józef Sowiński & Katarzyna Adamczewska-Sowińska & Małgorzata Wilusz-Nogueira & Dariusz Gruszka, 2025. "Selected Properties of Bioconversion Products of Lignocellulosic Biomass and Biodegradable Municipal Waste as a Method for Sustainable Management of Exogenous Organic Matter," Sustainability, MDPI, vol. 17(4), pages 1-20, February.
    16. Zhanjun Xu & Yuan Zhang & Jason Yang & Fenwu Liu & Rutian Bi & Hongfen Zhu & Chunjuan Lv & Jian Yu, 2019. "Effect of Underground Coal Mining on the Regional Soil Organic Carbon Pool in Farmland in a Mining Subsidence Area," Sustainability, MDPI, vol. 11(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4249-:d:1651217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.