Robust Enhancement of Direct Air Capture of CO 2 Efficiency Using Micro-Sized Anion Exchange Resin Particles
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lackner, Klaus S., 2013. "The thermodynamics of direct air capture of carbon dioxide," Energy, Elsevier, vol. 50(C), pages 38-46.
- Vivian Scott & Stuart Gilfillan & Nils Markusson & Hannah Chalmers & R. Stuart Haszeldine, 2013. "Last chance for carbon capture and storage," Nature Climate Change, Nature, vol. 3(2), pages 105-111, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fankhauser, Samuel & Jotzo, Frank, 2017.
"Economic growth and development with low-carbon energy,"
LSE Research Online Documents on Economics
86850, London School of Economics and Political Science, LSE Library.
- Sam Fankhauser & Frank Jotzo, 2017. "Economic growth and development with low-carbon energy," GRI Working Papers 267, Grantham Research Institute on Climate Change and the Environment.
- Sam Fankhauser & Frank Jotzo, 2017. "Economic growth and development with low-carbon energy," CCEP Working Papers 1705, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
- Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs," Energy Policy, Elsevier, vol. 74(C), pages 569-578.
- Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
- Xue‐Fei Wang & Long Xiong & Li Li & Jun‐Jun Zhong, 2020. "Effect of heat treatment temperature on CO2 capture of nitrogen‐enriched porous carbon fibers," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 461-471, April.
- T. Gasser & C. Guivarch & K. Tachiiri & C. D. Jones & P. Ciais, 2015.
"Negative emissions physically needed to keep global warming below 2 °C,"
Nature Communications, Nature, vol. 6(1), pages 1-7, November.
- T. Gasser & Céline Guivarch & K. Tachiiri & C. D. Jones & Philippe Ciais, 2015. "Negative emissions physically needed to keep global warming below 2 °C," Post-Print hal-01188788, HAL.
- Höller, Samuel & Viebahn, Peter, 2016. "Facing the uncertainty of CO2 storage capacity in China by developing different storage scenarios," Energy Policy, Elsevier, vol. 89(C), pages 64-73.
- Sinn, Hans-Werner, 2017.
"Buffering volatility: A study on the limits of Germany's energy revolution,"
European Economic Review, Elsevier, vol. 99(C), pages 130-150.
- Hans-Werner Sinn, 2016. "Buffering Volatility: A Study on the Limits of Germany’s Energy Revolution," NBER Working Papers 22467, National Bureau of Economic Research, Inc.
- Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," Munich Reprints in Economics 49895, University of Munich, Department of Economics.
- Hans-Werner Sinn, 2016. "Buffering Volatility: A Study on the Limits of Germany's Energy Revolution," CESifo Working Paper Series 5950, CESifo.
- Wang, Nan & Akimoto, Keigo & Nemet, Gregory F., 2021. "What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects," Energy Policy, Elsevier, vol. 158(C).
- Yiwei Wu & Hongyu Zhang & Shuaian Wang & Lu Zhen, 2023. "Mathematical Optimization of Carbon Storage and Transport Problem for Carbon Capture, Use, and Storage Chain," Mathematics, MDPI, vol. 11(12), pages 1-14, June.
- Wang, Qian & Du, Caiyi & Zhang, Xueguang, 2024. "Modeling and planning optimization of carbon capture load based on direct air capture," Energy, Elsevier, vol. 310(C).
- Chen, S. & Shi, W.K. & Yong, J.Y. & Zhuang, Y. & Lin, Q.Y. & Gao, N. & Zhang, X.J. & Jiang, L., 2023. "Numerical study on a structured packed adsorption bed for indoor direct air capture," Energy, Elsevier, vol. 282(C).
- Meng Zhu & Yingqing Su & Qi Feng & Wei Liu & Yuanyuan Xue & Lingge Wang & Zexia Chen & Jutao Zhang, 2024. "Identification of Priority Supply Areas for Carbon Sinks Based on Ecosystem Service Flow: A Case Study for the Hexi Region in Northwestern China," Land, MDPI, vol. 13(12), pages 1-16, December.
- Amin Shokrollahi & Afshin Tatar & Abbas Zeinijahromi, 2024. "Advancing CO 2 Solubility Prediction in Brine Solutions with Explainable Artificial Intelligence for Sustainable Subsurface Storage," Sustainability, MDPI, vol. 16(17), pages 1-26, August.
- Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
- Drechsler, Carsten & Agar, David W., 2020. "Intensified integrated direct air capture - power-to-gas process based on H2O and CO2 from ambient air," Applied Energy, Elsevier, vol. 273(C).
- Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
- Shakerian, Farid & Kim, Ki-Hyun & Szulejko, Jan E. & Park, Jae-Woo, 2015. "A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 148(C), pages 10-22.
- Jose Antonio Garcia & Maria Villen-Guzman & Jose Miguel Rodriguez-Maroto & Juan Manuel Paz-Garcia, 2024. "Comparing CO 2 Storage and Utilization: Enhancing Sustainability through Renewable Energy Integration," Sustainability, MDPI, vol. 16(15), pages 1-31, August.
- Tvinnereim, Endre & Ivarsflaten, Elisabeth, 2016. "Fossil fuels, employment, and support for climate policies," Energy Policy, Elsevier, vol. 96(C), pages 364-371.
- Günther, Philipp & Ekardt, Felix, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(12), pages 1-29.
More about this item
Keywords
CO 2 capture; Direct Air Capture; ion hydration; molecular dynamics; Water-stable;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3601-:d:1382812. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.