IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p2706-d1363666.html
   My bibliography  Save this article

Spatio-Temporal Variation Analysis of Soil Salinization in the Ougan-Kuqa River Oasis of China

Author

Listed:
  • Danying Du

    (College of Geographical and Remote Science, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Urumqi 830017, China)

  • Baozhong He

    (College of Geographical and Remote Science, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Urumqi 830017, China)

  • Xuefeng Luo

    (College of Geographical and Remote Science, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Urumqi 830017, China)

  • Shilong Ma

    (College of Geographical and Remote Science, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Urumqi 830017, China)

  • Yaning Song

    (College of Geographical and Remote Science, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Urumqi 830017, China)

  • Wen Yang

    (College of Geographical and Remote Science, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Urumqi 830017, China)

Abstract

In order to investigate the mechanism of environmental factors in soil salinization, this study focused on analyzing the temporal-spatial variation of soil salinity in the Ogan-Kuqa River Oasis in Xinjiang, China. The research aimed to predict soil salinity using a combination of satellite data, environmental covariates, and advanced modeling techniques. Firstly, Boruta and ReliefF algorithms were employed to select variables that significantly affect soil salinity from the Sentinel-2 satellite data and environmental covariates. Subsequently, a soil salinity inversion model was established using three advanced strategies: comprehensive variable analysis, a Boruta-based variable selection algorithm, and a ReliefF-based variable selection algorithm. Each strategy was modeled using a Light Gradient Boosting Machine (LightGBM), an Extreme Learning Machine (ELM), and a Support Vector Machine (SVM). Finally, the Boruta-LightGBM strategy was proven to be the most effective in predicting soil electrical conductivity (EC), with a coefficient of determination ( R 2 ) of 0.72 and a Root Mean Square Error (RMSE) of 12.49 ds/m. The experimental results show that the red-edge band index is the foremost variable in predicting soil salinity, succeeded by the salinity index and soil attribute data, while the topographic index has the least influence, which further demonstrates that proper variable selection could significantly improve model functionality and predictive precision. Furthermore, the Multiscale Geographically Weighted Regression (MGWR) model was utilized to reveal the influence and temporal-temporal-spatial heterogeneity of environmental factors such as soil organic carbon (SOC), precipitation (PRE), pH value, and temperature (TEM) on soil EC. This research offers not just a viable methodological framework for monitoring soil salinization but also new perspectives on the environmental drivers of soil salinity changes, which have implications for sustainable land management and provide valuable information for decision-making in soil salinity control and mitigation efforts.

Suggested Citation

  • Danying Du & Baozhong He & Xuefeng Luo & Shilong Ma & Yaning Song & Wen Yang, 2024. "Spatio-Temporal Variation Analysis of Soil Salinization in the Ougan-Kuqa River Oasis of China," Sustainability, MDPI, vol. 16(7), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2706-:d:1363666
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/2706/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/2706/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vinod Phogat & Tim Pitt & Paul Petrie & Jirka Šimůnek & Michael Cutting, 2023. "Optimization of Irrigation of Wine Grapes with Brackish Water for Managing Soil Salinization," Land, MDPI, vol. 12(10), pages 1-29, October.
    2. Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
    3. A. Stewart Fotheringham & Wenbai Yang & Wei Kang, 2017. "Multiscale Geographically Weighted Regression (MGWR)," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(6), pages 1247-1265, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanzhao Wang & Jianfei Cao, 2023. "Examining the Effects of Socioeconomic Development on Fine Particulate Matter (PM2.5) in China’s Cities Based on Spatial Autocorrelation Analysis and MGWR Model," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    2. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    3. Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    4. Ramón Ferri-García & María del Mar Rueda, 2022. "Variable selection in Propensity Score Adjustment to mitigate selection bias in online surveys," Statistical Papers, Springer, vol. 63(6), pages 1829-1881, December.
    5. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    6. Sangjin Kim & Jong-Min Kim, 2019. "Two-Stage Classification with SIS Using a New Filter Ranking Method in High Throughput Data," Mathematics, MDPI, vol. 7(6), pages 1-16, May.
    7. Zhao-Yue Chen & Hervé Petetin & Raúl Fernando Méndez Turrubiates & Hicham Achebak & Carlos Pérez García-Pando & Joan Ballester, 2024. "Population exposure to multiple air pollutants and its compound episodes in Europe," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Schrader, Silja & Graham, Sonia & Campbell, Rebecca & Height, Kaitlyn & Hawkes, Gina, 2024. "Grower attitudes and practices toward area-wide management of cropping weeds in Australia," Land Use Policy, Elsevier, vol. 137(C).
    9. Yigong Hu & Binbin Lu & Yong Ge & Guanpeng Dong, 2022. "Uncovering spatial heterogeneity in real estate prices via combined hierarchical linear model and geographically weighted regression," Environment and Planning B, , vol. 49(6), pages 1715-1740, July.
    10. Tao Wang & Kai Zhang & Keliang Liu & Keke Ding & Wenwen Qin, 2023. "Spatial Heterogeneity and Scale Effects of Transportation Carbon Emission-Influencing Factors—An Empirical Analysis Based on 286 Cities in China," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    11. Piotr Pomorski & Denise Gorse, 2023. "Improving Portfolio Performance Using a Novel Method for Predicting Financial Regimes," Papers 2310.04536, arXiv.org.
    12. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2022. "A babel of web-searches: Googling unemployment during the pandemic," Labour Economics, Elsevier, vol. 74(C).
    13. Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
    14. Abolfazl Mollalo & Kiara M. Rivera & Behzad Vahedi, 2020. "Artificial Neural Network Modeling of Novel Coronavirus (COVID-19) Incidence Rates across the Continental United States," IJERPH, MDPI, vol. 17(12), pages 1-13, June.
    15. Junfeng Wang & Shaoyao Zhang & Wei Deng & Qianli Zhou, 2024. "Metropolitan Expansion and Migrant Population: Correlation Patterns and Influencing Factors in Chengdu, China," Land, MDPI, vol. 13(1), pages 1-20, January.
    16. Xin Lao & Hengyu Gu, 2020. "Unveiling various spatial patterns of determinants of hukou transfer intentions in China: A multi‐scale geographically weighted regression approach," Growth and Change, Wiley Blackwell, vol. 51(4), pages 1860-1876, December.
    17. Zhenbao Wang & Jiarui Song & Yuchen Zhang & Shihao Li & Jianlin Jia & Chengcheng Song, 2022. "Spatial Heterogeneity Analysis for Influencing Factors of Outbound Ridership of Subway Stations Considering the Optimal Scale Range of “7D” Built Environments," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    18. Jiansheng Qu & Lina Liu & Jingjing Zeng & Tek Narayan Maraseni & Zhiqiang Zhang, 2022. "City-Level Determinants of Household CO 2 Emissions per Person: An Empirical Study Based on a Large Survey in China," Land, MDPI, vol. 11(6), pages 1-14, June.
    19. Faisal Alsayegh & Moh A Alkhamis & Fatima Ali & Sreeja Attur & Nicholas M Fountain-Jones & Mohammad Zubaid, 2022. "Anemia or other comorbidities? using machine learning to reveal deeper insights into the drivers of acute coronary syndromes in hospital admitted patients," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-15, January.
    20. Li Yue & Hongbo Zhao & Xiaoman Xu & Tianshun Gu & Zeting Jia, 2022. "Quantifying the Spatial Fragmentation Pattern and Its Influencing Factors of Urban Land Use: A Case Study of Pingdingshan City, China," Land, MDPI, vol. 11(5), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2706-:d:1363666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.