IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p2705-d1363647.html
   My bibliography  Save this article

The Effect of Electricity Generation on the Performance of Microbial Fuel Cells for Anammox

Author

Listed:
  • Wenqin Jiang

    (College of Architecture and Environment, Sichuan University, Chengdu 610207, China)

  • Jian Zhang

    (Sichuan Development Environmental Science and Technology Research Institute Co., Ltd., Chengdu 610041, China)

  • Qiulin Yang

    (Sichuan Development Environmental Science and Technology Research Institute Co., Ltd., Chengdu 610041, China)

  • Ping Yang

    (College of Architecture and Environment, Sichuan University, Chengdu 610207, China)

Abstract

The Anammox anaerobic fluidized bed microbial fuel cell (Anammox AFB-MFC) exhibits exceptional performance in both nitrogen removal and electricity generation, effectively eliminating ammonia nitrogen (NH 4 + -N) and nitrite nitrogen (NO 2 − -N) pollutants. This technology offers the advantages of high efficiency in nitrogen removal and low electricity consumption. By coupling an AFB with an MFC, the Anammox AFB-MFC was developed through the introduction of anaerobic ammonia-oxidizing bacteria (AnAOB) into MFC. Anammox AFB-MFC’s nitrogen removal ability was found to be superior at an influent COD concentration of 200 mg/L, as determined by a study conducted under unchanged conditions. Subsequently, an open and closed-circuit experiment was performed on the Anammox AFB-MFC system while maintaining a COD concentration of 200 mg/L in the influent. Remarkably, the reactor exhibited significantly enhanced nitrogen removal performance when electricity generation occurred. Throughout the entire experimental process, the reactor consistently maintained high nitrogen removal efficiency and electricity production performance. Under optimal experimental conditions, the reactor achieved a remarkable nitrogen removal rate of 91.8% and an impressive output voltage of 439.1 mV. Additionally, the generation of Anammox bioparticles in MFC significantly contributed to efficient pollutant removal. This study elucidates the impact of organic matter on both the nitrogen removal and electricity generation capabilities of Anammox AFB-MFC, as well as highlights the synergistic effect between MFC electricity generation and nitrogen removal in the reactor.

Suggested Citation

  • Wenqin Jiang & Jian Zhang & Qiulin Yang & Ping Yang, 2024. "The Effect of Electricity Generation on the Performance of Microbial Fuel Cells for Anammox," Sustainability, MDPI, vol. 16(7), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2705-:d:1363647
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/2705/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/2705/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marc Strous & Eric Pelletier & Sophie Mangenot & Thomas Rattei & Angelika Lehner & Michael W. Taylor & Matthias Horn & Holger Daims & Delphine Bartol-Mavel & Patrick Wincker & Valérie Barbe & Nuria Fo, 2006. "Deciphering the evolution and metabolism of an anammox bacterium from a community genome," Nature, Nature, vol. 440(7085), pages 790-794, April.
    2. ChaoQing Yu & Xiao Huang & Han Chen & H. Charles J. Godfray & Jonathon S. Wright & Jim W. Hall & Peng Gong & ShaoQiang Ni & ShengChao Qiao & GuoRui Huang & YuChen Xiao & Jie Zhang & Zhao Feng & XiaoTa, 2019. "Managing nitrogen to restore water quality in China," Nature, Nature, vol. 567(7749), pages 516-520, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heng Liu & Caizhu Huang & Heng Lian & Xia Cui, 2023. "Hierarchical Spatially Varying Coefficient Process Regression for Modeling Net Anthropogenic Nitrogen Inputs (NANI) from the Watershed of the Yangtze River, China," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    2. Jianqin Ma & Yongqing Wang & Lei Liu & Bifeng Cui & Yu Ding & Lansong Liu, 2025. "Research on Summer Maize Irrigation and Fertilization Strategy in Henan Province Based on Multi-Objective Optimization Model," Sustainability, MDPI, vol. 17(5), pages 1-13, February.
    3. Li Wang & Siyuan Liu & Wendi Xuan & Shaopeng Li & Anlei Wei, 2022. "Efficient Nitrate Adsorption from Groundwater by Biochar-Supported Al-Substituted Goethite," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    4. Mingqing Liu & Yuncheng Wu & Sijie Huang & Yuwen Yang & Yan Li & Lei Wang & Yunguan Xi & Jibing Zhang & Qiuhui Chen, 2022. "Effects of Organic Fertilization Rates on Surface Water Nitrogen and Phosphorus Concentrations in Paddy Fields," Agriculture, MDPI, vol. 12(9), pages 1-12, September.
    5. Mengru Wang & Benjamin Leon Bodirsky & Rhodé Rijneveld & Felicitas Beier & Mirjam P. Bak & Masooma Batool & Bram Droppers & Alexander Popp & Michelle T. H. Vliet & Maryna Strokal, 2024. "A triple increase in global river basins with water scarcity due to future pollution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Wang, Zhong-Jun & Yue, Fu-Jun & Wang, Yu-Chun & Qin, Cai-Qing & Ding, Hu & Xue, Li-Li & Li, Si-Liang, 2022. "The effect of heavy rainfall events on nitrogen patterns in agricultural surface and underground streams and the implications for karst water quality protection," Agricultural Water Management, Elsevier, vol. 266(C).
    7. Duan, Chenxiao & Li, Jiabei & Zhang, Binbin & Wu, Shufang & Fan, Junliang & Feng, Hao & He, Jianqiang & Siddique, Kadambot H.M., 2023. "Effect of bio-organic fertilizer derived from agricultural waste resources on soil properties and winter wheat (Triticum aestivum L.) yield in semi-humid drought-prone regions," Agricultural Water Management, Elsevier, vol. 289(C).
    8. Kiyotaka Tsunemi & Tohru Kawamoto & Hideyuki Matsumoto, 2023. "Estimation of the Potential Global Nitrogen Flow in a Nitrogen Recycling System with Industrial Countermeasures," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
    9. Qiuyun Jiang & Lei Cao & Yingchun Han & Shengjie Li & Rui Zhao & Xiaoli Zhang & S. Emil Ruff & Zhuoming Zhao & Jiaxue Peng & Jing Liao & Baoli Zhu & Minxiao Wang & Xianbiao Lin & Xiyang Dong, 2025. "Cold seeps are potential hotspots of deep-sea nitrogen loss driven by microorganisms across 21 phyla," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    10. Panpan Ji & Jianhui Chen & Ruijin Chen & Jianbao Liu & Chaoqing Yu & Fahu Chen, 2024. "Nitrogen and phosphorus trends in lake sediments of China may diverge," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Qinyi Huang & Yu Zhang, 2021. "Decoupling and Decomposition Analysis of Agricultural Carbon Emissions: Evidence from Heilongjiang Province, China," IJERPH, MDPI, vol. 19(1), pages 1-16, December.
    12. Taotao Chen & Erping Cui & Yanbo Zhang & Ge Gao & Hao You & Yurun Tian & Chao Hu & Yuan Liu & Tao Fan & Xiangyang Fan, 2024. "Microbial Network Complexity Helps to Reduce the Deep Migration of Chemical Fertilizer Nitrogen Under the Combined Application of Varying Irrigation Amounts and Multiple Nitrogen Sources," Agriculture, MDPI, vol. 14(12), pages 1-18, December.
    13. Ouping Deng & Sitong Wang & Jiangyou Ran & Shuai Huang & Xiuming Zhang & Jiakun Duan & Lin Zhang & Yongqiu Xia & Stefan Reis & Jiayu Xu & Jianming Xu & Wim Vries & Mark A. Sutton & Baojing Gu, 2024. "Managing urban development could halve nitrogen pollution in China," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Mehridokht Mortazavi & Mohammad Bagher Zandi & Rostam Pahlavan & Moradpasha Eskandari Nasab & Hinayah Rojas de Oliveira, 2025. "Estimation of Genetic Parameters for Milk Urea Nitrogen in Iranian Holstein Cattle Using Random Regression Models," Agriculture, MDPI, vol. 15(4), pages 1-16, February.
    15. Richard W. McDowell & Dongwen Luo & Peter Pletnyakov & Martin Upsdell & Walter K. Dodds, 2025. "Anthropogenic nutrient inputs cause excessive algal growth for nearly half the world’s population," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    16. Wang, Tian & Xiao, Wenfa & Huang, Zhilin & Zeng, Lixiong, 2022. "Interflow pattern govern nitrogen loss from tea orchard slopes in response to rainfall pattern in Three Gorges Reservoir Area," Agricultural Water Management, Elsevier, vol. 269(C).
    17. Kolluru, Venkatesh & John, Ranjeet & Saraf, Sakshi & Chen, Jiquan & Hankerson, Brett & Robinson, Sarah & Kussainova, Maira & Jain, Khushboo, 2023. "Gridded livestock density database and spatial trends for Kazakhstan," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 10, pages 1-15.
    18. Yixuan Yang & Tongqian Zhao & Huazhe Jiao & Li Wu & Chunyan Xiao & Xiaoming Guo, 2022. "Types and Distribution of Organic Amines in Organic Nitrogen Deposition in Strategic Water Sources," IJERPH, MDPI, vol. 19(7), pages 1-17, March.
    19. Binhui Chen & Xiuming Zhang & Baojing Gu, 2025. "Managing nitrogen to achieve sustainable food-energy-water nexus in China," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    20. Wang, Hongzhang & Ren, Hao & Zhang, Lihua & Zhao, Yali & Liu, Yuee & He, Qijin & Li, Geng & Han, Kun & Zhang, Jiwang & Zhao, Bin & Ren, Baizhao & Liu, Peng, 2023. "A sustainable approach to narrowing the summer maize yield gap experienced by smallholders in the North China Plain," Agricultural Systems, Elsevier, vol. 204(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2705-:d:1363647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.