IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p2642-d1362504.html
   My bibliography  Save this article

Design Optimization of a Grid-Tied Hybrid System for a Department at a University with a Dispatch Strategy-Based Assessment

Author

Listed:
  • Md. Fatin Ishraque

    (Department of Electrical, Electronic and Communication Engineering (EECE), Pabna University of Science and Technology (PUST), Pabna 6600, Bangladesh)

  • Akhlaqur Rahman

    (Department of Electrical Engineering and Industrial Automation, Engineering Institute of Technology, Melbourne Campus, Melbourne, VIC 3001, Australia)

  • Sk. A. Shezan

    (Department of Electrical Engineering and Industrial Automation, Engineering Institute of Technology, Melbourne Campus, Melbourne, VIC 3001, Australia
    School of Engineering and Energy, Murdoch University, Perth, WA 6150, Australia)

  • G. M. Shafiullah

    (School of Engineering and Energy, Murdoch University, Perth, WA 6150, Australia)

  • Ali H Alenezi

    (Remote Sensing Unit, Electrical Engineering Department, Northern Border University, Arar 73213, Saudi Arabia)

  • Md Delwar Hossen

    (Department of Electrical and Electronic Engineering, Uttara University, Dhaka 1230, Bangladesh)

  • Noor E Nahid Bintu

    (Department of Computer Science, Victoria University, Sydney, NSW 2000, Australia)

Abstract

In this research project, the optimal design and design evaluation of a hybrid microgrid based on solar photovoltaics, wind turbines, batteries, and diesel generators were performed. The conventional grid-tied mode was used in addition to dispatch strategy-based control. The study’s test location was the loads in the Electrical, Electronic and Communication Engineering (EECE) department at Pabna University of Science and Technology (PUST), Pabna, Bangladesh. DIgSILENT PowerFactory was employed to determine the power system-based behaviors (electrical power, current, voltage, and frequency) of the proposed hybrid system, while a derivative-free algorithm was used for the expense, optimal size, and emission assessments. While developing the microgrid, load following (LoF) and cycle charging (CyC) control were employed. The microgrid is supposed to have a 23.31 kW peak load requirement. The estimated microgrid’s levelized cost of energy (LE), its net present cost (NC), its operating cost, and its annual harmful gas emissions were estimated in this work. Additionally, since the microgrid is grid-connected, the amount of energy output that might be exported to the grid was also estimated, which will potentially increase during blackouts. The power system responses found in this study ensure that the various microgrid components’ voltage, frequency, current, and power outcomes are steady within the designated range, making the microgrid practical and robust.

Suggested Citation

  • Md. Fatin Ishraque & Akhlaqur Rahman & Sk. A. Shezan & G. M. Shafiullah & Ali H Alenezi & Md Delwar Hossen & Noor E Nahid Bintu, 2024. "Design Optimization of a Grid-Tied Hybrid System for a Department at a University with a Dispatch Strategy-Based Assessment," Sustainability, MDPI, vol. 16(7), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2642-:d:1362504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/2642/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/2642/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali, Fahad & Ahmar, Muhammad & Jiang, Yuexiang & AlAhmad, Mohammad, 2021. "A techno-economic assessment of hybrid energy systems in rural Pakistan," Energy, Elsevier, vol. 215(PA).
    2. Abid, Md. Shadman & Ahshan, Razzaqul & Al Abri, Rashid & Al-Badi, Abdullah & Albadi, Mohammed, 2024. "Techno-economic and environmental assessment of renewable energy sources, virtual synchronous generators, and electric vehicle charging stations in microgrids," Applied Energy, Elsevier, vol. 353(PA).
    3. Abo-Zahhad, Essam M. & Rashwan, Ahmed & Salameh, Tareq & Hamid, Abdul Kadir & Faragalla, Asmaa & El-Dein, Adel Z. & Chen, Yong & Abdelhameed, Esam H., 2024. "Evaluation of solar PV-based microgrids viability utilizing single and multi-criteria decision analysis," Renewable Energy, Elsevier, vol. 221(C).
    4. Fatin Ishraque, Md. & Shezan, Sk. A. & Ali, M.M. & Rashid, M.M., 2021. "Optimization of load dispatch strategies for an islanded microgrid connected with renewable energy sources," Applied Energy, Elsevier, vol. 292(C).
    5. Chen, Xiaoyuan & Zhang, Mingshun & Jiang, Shan & Gou, Huayu & Zhou, Pang & Yang, Ruohuan & Shen, Boyang, 2023. "Energy reliability enhancement of a data center/wind hybrid DC network using superconducting magnetic energy storage," Energy, Elsevier, vol. 263(PA).
    6. Xiong, Guojiang & Shi, Dongyuan & Duan, Xianzhong, 2013. "Multi-strategy ensemble biogeography-based optimization for economic dispatch problems," Applied Energy, Elsevier, vol. 111(C), pages 801-811.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Myada Shadoul & Rashid Al Abri & Hassan Yousef & Abdullah Al Shereiqi, 2024. "Designing a Dispatch Engine for Hybrid Renewable Power Stations Using a Mixed-Integer Linear Programming Technique," Energies, MDPI, vol. 17(13), pages 1-27, July.
    2. Md. Fatin Ishraque & Sk. A. Shezan & Md. Sohel Rana & S. M. Muyeen & Akhlaqur Rahman & Liton Chandra Paul & Md. Shafiul Islam, 2021. "Optimal Sizing and Assessment of a Renewable Rich Standalone Hybrid Microgrid Considering Conventional Dispatch Methodologies," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    3. Güven, Aykut Fatih & Yörükeren, Nuran & Samy, Mohamed Mahmoud, 2022. "Design optimization of a stand-alone green energy system of university campus based on Jaya-Harmony Search and Ant Colony Optimization algorithms approaches," Energy, Elsevier, vol. 253(C).
    4. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    5. Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2024. "Optimal Power Dispatch for Maximum Energy Community Welfare by Considering Closed Distribution Systems and Renewable Sources," Energies, MDPI, vol. 17(18), pages 1-21, September.
    6. Sanjoy Kumar Saha, 2024. "Assessing the impact of rural electrification on economic growth: a comprehensive analysis considering informal economy and income inequality in Bangladesh," Asia-Pacific Journal of Regional Science, Springer, vol. 8(2), pages 551-583, June.
    7. Ghulam Abbas & Irfan Ahmad Khan & Naveed Ashraf & Muhammad Taskeen Raza & Muhammad Rashad & Raheel Muzzammel, 2023. "On Employing a Constrained Nonlinear Optimizer to Constrained Economic Dispatch Problems," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    8. Pereira, Géssica Michelle dos Santos & Weigert, Gabriela Rosalee & Macedo, Pablo Lopes & Silva, Kiane Alves e & Segura Salas, Cresencio Silvio & Gonçalves, Antônio Maurício de Matos & Nascimento, Hebe, 2022. "Quasi-dynamic operation and maintenance plan for photovoltaic systems in remote areas: The framework of Pantanal-MS," Renewable Energy, Elsevier, vol. 181(C), pages 404-416.
    9. Hosseini Dehshiri, Seyyed Jalaladdin & Amiri, Maghsoud & Mostafaeipour, Ali & Le, Ttu, 2024. "Evaluation of renewable energy projects based on sustainability goals using a hybrid pythagorean fuzzy-based decision approach," Energy, Elsevier, vol. 297(C).
    10. Kang, Kai & Su, Yifan & Yang, Peng & Wang, Zhaojian & Liu, Feng, 2025. "Securing long-term dispatch of isolated microgrids with high-penetration renewable generation: A controlled evolution-based framework," Applied Energy, Elsevier, vol. 381(C).
    11. Muhammad Ahmar & Fahad Ali & Yuexiang Jiang & Mamdooh Alwetaishi & Sherif S. M. Ghoneim, 2022. "Households’ Energy Choices in Rural Pakistan," Energies, MDPI, vol. 15(9), pages 1-23, April.
    12. Arifa Tanveer & Shihong Zeng & Muhammad Irfan & Rui Peng, 2021. "Do Perceived Risk, Perception of Self-Efficacy, and Openness to Technology Matter for Solar PV Adoption? An Application of the Extended Theory of Planned Behavior," Energies, MDPI, vol. 14(16), pages 1-24, August.
    13. Ren, Haoshan & Ma, Zhenjun & Chan, Antoni B. & Sun, Yongjun, 2023. "Optimal planning of municipal-scale distributed rooftop photovoltaic systems with maximized solar energy generation under constraints in high-density cities," Energy, Elsevier, vol. 263(PA).
    14. Abdullah Al Abri & Abdullah Al Kaaf & Musaab Allouyahi & Ali Al Wahaibi & Razzaqul Ahshan & Rashid S. Al Abri & Ahmed Al Abri, 2022. "Techno-Economic and Environmental Analysis of Renewable Mix Hybrid Energy System for Sustainable Electrification of Al-Dhafrat Rural Area in Oman," Energies, MDPI, vol. 16(1), pages 1-23, December.
    15. Xiaobing Yu & Xianrui Yu & Yiqun Lu & Jichuan Sheng, 2018. "Economic and Emission Dispatch Using Ensemble Multi-Objective Differential Evolution Algorithm," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    16. Mousavi, Seyed Ali & Toopshekan, Ashkan & Mehrpooya, Mehdi & Delpisheh, Mostafa, 2023. "Comprehensive exergetic performance assessment and techno-financial optimization of off-grid hybrid renewable configurations with various dispatch strategies and solar tracking systems," Renewable Energy, Elsevier, vol. 210(C), pages 40-63.
    17. Kheshti, Mostafa & Ding, Lei & Ma, Shicong & Zhao, Bing, 2018. "Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems," Renewable Energy, Elsevier, vol. 125(C), pages 1021-1037.
    18. Alya AlHammadi & Nasser Al-Saif & Ameena Saad Al-Sumaiti & Mousa Marzband & Tareefa Alsumaiti & Ehsan Heydarian-Forushani, 2022. "Techno-Economic Analysis of Hybrid Renewable Energy Systems Designed for Electric Vehicle Charging: A Case Study from the United Arab Emirates," Energies, MDPI, vol. 15(18), pages 1-20, September.
    19. Goudarzi, Arman & Swanson, Andrew G. & Van Coller, John & Siano, Pierluigi, 2017. "Smart real-time scheduling of generating units in an electricity market considering environmental aspects and physical constraints of generators," Applied Energy, Elsevier, vol. 189(C), pages 667-696.
    20. Ioan Cristian Hoarcă & Nicu Bizon & Ioan Sorin Șorlei & Phatiphat Thounthong, 2023. "Sizing Design for a Hybrid Renewable Power System Using HOMER and iHOGA Simulators," Energies, MDPI, vol. 16(4), pages 1-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2642-:d:1362504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.