IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p1935-d1346754.html
   My bibliography  Save this article

Multi-Objective Optimization of Building Energy Saving Based on the Randomness of Energy-Related Occupant Behavior

Author

Listed:
  • Zhouchen Zhang

    (Department of Civil Engineering, Ningbo University, Ningbo 315211, China)

  • Jian Yao

    (Department of Architecture, Ningbo University, Ningbo 315211, China)

  • Rongyue Zheng

    (Department of Civil Engineering, Ningbo University, Ningbo 315211, China)

Abstract

Given the escalating global energy demand driven by building energy consumption, this study is dedicated to meticulously investigating efficient energy-saving strategies in buildings, with a keen focus on the impact of occupant behavior’s randomness on energy efficiency and multi-objective optimization. The methodology encompassed a thorough analysis of various energy consumption factors, including building envelope and architectural form. We employed Latin Hypercube Sampling for in-depth sampling studies across each factor’s reasonable range. Utilizing Sobol sensitivity analysis, we pinpointed variables of high sensitivity and embarked on multi-objective optimization targeting two primary indicators: energy consumption and thermal comfort. Leveraging the NSGA-II algorithm, we adeptly identified optimal solutions, culminating in the proposition of building energy-saving strategies anchored on the Pareto frontier. Through stochastic modeling simulations of occupant behavior in window opening and air conditioning usage, a comparison was made with models that do not consider occupant behavior. It was found that incorporating occupant behavior into energy-saving designs can reduce energy consumption by up to 20.20%, while ensuring thermal comfort. This approach can achieve improved energy efficiency and indoor comfort.

Suggested Citation

  • Zhouchen Zhang & Jian Yao & Rongyue Zheng, 2024. "Multi-Objective Optimization of Building Energy Saving Based on the Randomness of Energy-Related Occupant Behavior," Sustainability, MDPI, vol. 16(5), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1935-:d:1346754
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/1935/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/1935/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Méndez Echenagucia, Tomás & Capozzoli, Alfonso & Cascone, Ylenia & Sassone, Mario, 2015. "The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis," Applied Energy, Elsevier, vol. 154(C), pages 577-591.
    2. Yao, Jian, 2014. "Determining the energy performance of manually controlled solar shades: A stochastic model based co-simulation analysis," Applied Energy, Elsevier, vol. 127(C), pages 64-80.
    3. Yao, Jian, 2012. "Energy optimization of building design for different housing units in apartment buildings," Applied Energy, Elsevier, vol. 94(C), pages 330-337.
    4. Beccali, Marco & Ciulla, Giuseppina & Lo Brano, Valerio & Galatioto, Alessandra & Bonomolo, Marina, 2017. "Artificial neural network decision support tool for assessment of the energy performance and the refurbishment actions for the non-residential building stock in Southern Italy," Energy, Elsevier, vol. 137(C), pages 1201-1218.
    5. Kalogirou, Soteris A. & Bojic, Milorad, 2000. "Artificial neural networks for the prediction of the energy consumption of a passive solar building," Energy, Elsevier, vol. 25(5), pages 479-491.
    6. Mahlia, T.M.I. & Iqbal, A., 2010. "Cost benefits analysis and emission reductions of optimum thickness and air gaps for selected insulation materials for building walls in Maldives," Energy, Elsevier, vol. 35(5), pages 2242-2250.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    2. Beccali, M. & Bonomolo, M. & Ciulla, G. & Lo Brano, V., 2018. "Assessment of indoor illuminance and study on best photosensors' position for design and commissioning of Daylight Linked Control systems. A new method based on artificial neural networks," Energy, Elsevier, vol. 154(C), pages 466-476.
    3. Fabrizio Ascione & Nicola Bianco & Rosa Francesca De Masi & Gerardo Maria Mauro & Giuseppe Peter Vanoli, 2015. "Design of the Building Envelope: A Novel Multi-Objective Approach for the Optimization of Energy Performance and Thermal Comfort," Sustainability, MDPI, vol. 7(8), pages 1-28, August.
    4. Sean Hay Kim & Jungmin Nam, 2020. "Can Both the Economic Value and Energy Performance of Small- and Mid-Sized Buildings Be Satisfied? Development of a Design Expert System in the Context of Korea," Sustainability, MDPI, vol. 12(12), pages 1-29, June.
    5. Bin Xu & Xiang Yuan, 2022. "A Novel Method of BP Neural Network Based Green Building Design—The Case of Hotel Buildings in Hot Summer and Cold Winter Region of China," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    6. Joan Manuel Felix Benitez & Luis Alfonso del Portillo-Valdés & Rene Pérez & David Sosa, 2022. "Methodology to Determine Energy Efficiency Strategies in Buildings Sited in Tropical Climatic Zones; Case Study, Buildings of the Tertiary Sector in the Dominican Republic," Energies, MDPI, vol. 15(13), pages 1-31, June.
    7. Cristina Carletti & Fabio Sciurpi & Leone Pierangioli, 2014. "The Energy Upgrading of Existing Buildings: Window and Shading Device Typologies for Energy Efficiency Refurbishment," Sustainability, MDPI, vol. 6(8), pages 1-24, August.
    8. Jian Yao & Rongyue Zheng, 2017. "Stochastic Characteristics of Manual Solar Shades and their Influence on Building Energy Performance," Sustainability, MDPI, vol. 9(6), pages 1-15, June.
    9. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Giacomo Chiesa & Andrea Acquaviva & Mario Grosso & Lorenzo Bottaccioli & Maurizio Floridia & Edoardo Pristeri & Edoardo Maria Sanna, 2019. "Parametric Optimization of Window-to-Wall Ratio for Passive Buildings Adopting A Scripting Methodology to Dynamic-Energy Simulation," Sustainability, MDPI, vol. 11(11), pages 1-30, May.
    11. Saurbayeva, Assemgul & Memon, Shazim Ali & Kim, Jong, 2023. "Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones," Energy, Elsevier, vol. 278(PB).
    12. Yao, Jian, 2020. "Uncertainty of building energy performance at spatio-temporal scales: A comparison of aggregated and disaggregated behavior models of solar shade control," Energy, Elsevier, vol. 195(C).
    13. Jian Yao, 2014. "A Multi-Objective (Energy, Economic and Environmental Performance) Life Cycle Analysis for Better Building Design," Sustainability, MDPI, vol. 6(2), pages 1-13, January.
    14. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    15. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    16. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    17. Buratti, Cinzia & Barelli, Linda & Moretti, Elisa, 2012. "Application of artificial neural network to predict thermal transmittance of wooden windows," Applied Energy, Elsevier, vol. 98(C), pages 425-432.
    18. Axaopoulos, Ioannis & Axaopoulos, Petros & Gelegenis, John, 2014. "Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind," Applied Energy, Elsevier, vol. 117(C), pages 167-175.
    19. Fernandes, Marco S. & Rodrigues, Eugénio & Gaspar, Adélio Rodrigues & Costa, José J. & Gomes, Álvaro, 2019. "The impact of thermal transmittance variation on building design in the Mediterranean region," Applied Energy, Elsevier, vol. 239(C), pages 581-597.
    20. Omer Kaynakli, 2011. "Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls," Energies, MDPI, vol. 4(6), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1935-:d:1346754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.