IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i21p9438-d1510342.html
   My bibliography  Save this article

Operational Energy in Historic Religious Buildings: A Qualitative Approach

Author

Listed:
  • Étienne Berthold

    (Department of Geography, Université Laval, Québec, QC G1V 0A6, Canada)

  • Kim Pawliw

    (Department of Geography, Université Laval, Québec, QC G1V 0A6, Canada)

  • Mathieu St-Pierre

    (Department of Geography, Université Laval, Québec, QC G1V 0A6, Canada)

  • Francis Pronovost

    (Écobâtiment, Québec, QC G1R 2T9, Canada)

  • Léa Méthé

    (Écobâtiment, Québec, QC G1R 2T9, Canada)

Abstract

Typically, operational energy is approached and evaluated from a quantitative point of view and, to a large extent, according to life cycle assessment (LCA). This article seeks to develop a qualitative approach to assess the past operational energy of a historic religious building in the province of Quebec, Canada. We propose a method for determining the past thermal sensation of individuals residing in a monastery by evaluating this sensation using the thermal sensation vote (TSV) related to the predicted mean vote (PMV). Doing so allows us to infer the operational temperatures and setpoints, providing an additional indicator of energy consumption. The proposed method is based on the identification and analysis of individual perceptions contained in archive documents, facilitating the reconstruction of the expressed thermal sensation and of a TSV index. The method is deployed on a prospective basis, enabling the creation of a chronological series designed to exhaustively document the thermal sensation during heating periods. This article contributes to discussions among critics who have observed a mismatch between TSV indices and PMV parameters and prognosis. It also brings us closer to a finer understanding of thermal comfort and the use/consumption of operational energy in historic religious buildings.

Suggested Citation

  • Étienne Berthold & Kim Pawliw & Mathieu St-Pierre & Francis Pronovost & Léa Méthé, 2024. "Operational Energy in Historic Religious Buildings: A Qualitative Approach," Sustainability, MDPI, vol. 16(21), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9438-:d:1510342
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/21/9438/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/21/9438/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arumägi, Endrik & Kalamees, Targo, 2014. "Analysis of energy economic renovation for historic wooden apartment buildings in cold climates," Applied Energy, Elsevier, vol. 115(C), pages 540-548.
    2. Chiara Burattini & Fabio Nardecchia & Fabio Bisegna & Lucia Cellucci & Franco Gugliermetti & Andrea De Lieto Vollaro & Ferdinando Salata & Iacopo Golasi, 2015. "Methodological Approach to the Energy Analysis of Unconstrained Historical Buildings," Sustainability, MDPI, vol. 7(8), pages 1-17, August.
    3. Bin, Guoshu & Parker, Paul, 2012. "Measuring buildings for sustainability: Comparing the initial and retrofit ecological footprint of a century home – The REEP House," Applied Energy, Elsevier, vol. 93(C), pages 24-32.
    4. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    5. Chuan Chen & Mengshu He & Zihan Chu & Lishi He & Jiale Zhu & Yuan Bu & Jiangjun Wan & Lingqing Zhang, 2022. "Field Study on Indoor Thermal Environments of Monastic Houses and Thermal Comfort of Monks," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    6. Pisello, Anna Laura & Petrozzi, Alessandro & Castaldo, Veronica Lucia & Cotana, Franco, 2016. "On an innovative integrated technique for energy refurbishment of historical buildings: Thermal-energy, economic and environmental analysis of a case study," Applied Energy, Elsevier, vol. 162(C), pages 1313-1322.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gireesh Nair & Leo Verde & Thomas Olofsson, 2022. "A Review on Technical Challenges and Possibilities on Energy Efficient Retrofit Measures in Heritage Buildings," Energies, MDPI, vol. 15(20), pages 1-20, October.
    2. Mazzeo, D. & Oliveti, G. & Arcuri, N., 2016. "Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime," Applied Energy, Elsevier, vol. 164(C), pages 509-531.
    3. Roberta Moschetti & Helge Brattebø, 2017. "Combining Life Cycle Environmental and Economic Assessments in Building Energy Renovation Projects," Energies, MDPI, vol. 10(11), pages 1-17, November.
    4. Cho, Hyun Mi & Yun, Beom Yeol & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Optimal energy retrofit plan for conservation and sustainable use of historic campus building: Case of cultural property building," Applied Energy, Elsevier, vol. 275(C).
    5. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    6. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    7. Yuanxin Liu & FengYun Li & Yi Wang & Xinhua Yu & Jiahai Yuan & Yuwei Wang, 2018. "Assessing the Environmental Impact Caused by Power Grid Projects in High Altitude Areas Based on BWM and Vague Sets Techniques," Sustainability, MDPI, vol. 10(6), pages 1-20, May.
    8. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    9. Hanli Chen & Chunmei Lu, 2023. "Research on the Spatial Effect and Threshold Characteristics of New-Type Urbanization on Carbon Emissions in China’s Construction Industry," Sustainability, MDPI, vol. 15(22), pages 1-26, November.
    10. Pikas, Ergo & Thalfeldt, Martin & Kurnitski, Jarek & Liias, Roode, 2015. "Extra cost analyses of two apartment buildings for achieving nearly zero and low energy buildings," Energy, Elsevier, vol. 84(C), pages 623-633.
    11. Anti Hamburg & Targo Kalamees, 2018. "The Influence of Energy Renovation on the Change of Indoor Temperature and Energy Use," Energies, MDPI, vol. 11(11), pages 1-15, November.
    12. Yannick Lessard & Chirjiv Anand & Pierre Blanchet & Caroline Frenette & Ben Amor, 2018. "LEED v4: Where Are We Now? Critical Assessment through the LCA of an Office Building Using a Low Impact Energy Consumption Mix," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1105-1116, October.
    13. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    14. Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
    15. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    16. Chen, Ruijun & Tsay, Yaw-Shyan & Zhang, Ting, 2023. "A multi-objective optimization strategy for building carbon emission from the whole life cycle perspective," Energy, Elsevier, vol. 262(PA).
    17. Alessia Buda & Ernst Jan de Place Hansen & Alexander Rieser & Emanuela Giancola & Valeria Natalina Pracchi & Sara Mauri & Valentina Marincioni & Virginia Gori & Kalliopi Fouseki & Cristina S. Polo Lóp, 2021. "Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    18. Georgios Tsoumanis & João Formiga & Nuno Bilo & Panagiotis Tsarchopoulos & Dimosthenis Ioannidis & Dimitrios Tzovaras, 2021. "The Smart Evolution of Historical Cities: Integrated Innovative Solutions Supporting the Energy Transition while Respecting Cultural Heritage," Sustainability, MDPI, vol. 13(16), pages 1-29, August.
    19. Coline Senior & Alenka Temeljotov Salaj & Milena Vukmirovic & Mina Jowkar & Živa Kristl, 2021. "The Spirit of Time—The Art of Self-Renovation to Improve Indoor Environment in Cultural Heritage Buildings," Energies, MDPI, vol. 14(13), pages 1-27, July.
    20. Yan, Kun & Gao, Hanbo & Liu, Rui & Lyu, Yizheng & Wan, Mei & Tian, Jinping & Chen, Lyujun, 2024. "Review on low-carbon development in Chinese industrial parks driven by bioeconomy strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9438-:d:1510342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.