IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i20p9101-d1503003.html
   My bibliography  Save this article

Assessing Watershed Flood Resilience Based on a Grid-Scale System Performance Curve That Considers Double Thresholds

Author

Listed:
  • Xin Su

    (The National Key Laboratory of Inundation Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210029, China)

  • Leizhi Wang

    (The National Key Laboratory of Inundation Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210029, China)

  • Lingjie Li

    (The National Key Laboratory of Inundation Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210029, China
    Yangtze Institute for Conservation and Development, Nanjing 210098, China)

  • Xiting Li

    (Institute of Water Science and Technology, Hohai University, Nanjing 211164, China)

  • Yintang Wang

    (The National Key Laboratory of Inundation Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210029, China
    Yangtze Institute for Conservation and Development, Nanjing 210098, China)

  • Yong Liu

    (The National Key Laboratory of Inundation Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210029, China)

  • Qingfang Hu

    (The National Key Laboratory of Inundation Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210029, China)

Abstract

Enhancing flood resilience has become crucial for watershed flood prevention. However, current methods for quantifying resilience often exhibit coarse spatiotemporal granularity, leading to insufficient precision in watershed resilience assessments and hindering the accurate implementation of resilience enhancement measures. This study proposes a watershed flood resilience assessment method based on a system performance curve that considers thresholds of inundation depth and duration. A nested one- and two-dimensional coupled hydrodynamic model, spanning two spatial scales, was utilized to simulate flood processes in plain river network areas with detailed and complex hydraulic connections. The proposed framework was applied to the Hangjiahu area (Taihu Basin, China). The results indicated that the overall trend of resilience curves across different underlying surfaces initially decreased and then increase, with a significant decline observed within 20–50 h. The resilience of paddy fields and forests was the highest, while that of drylands and grasslands was the lowest, but the former had less recovery ability than the latter. The resilience of urban systems sharply declined within the first 40 h and showed no signs of recovery, with the curve remaining at a low level. In some regions, the flood tolerance depth and duration for all land use types exceeded the upper threshold. The resilience of the western part of the Hangjiahu area was higher than that of other regions, whereas the resilience of the southern region was lower compared to the northern region. The terrain and tolerance thresholds of inundation depth were the main factors affecting watershed flood resilience. The findings of this study provide a basis for a deeper understanding of the spatiotemporal evolution patterns of flood resilience and for precisely guiding the implementation and management of flood resilience enhancement projects in the watershed.

Suggested Citation

  • Xin Su & Leizhi Wang & Lingjie Li & Xiting Li & Yintang Wang & Yong Liu & Qingfang Hu, 2024. "Assessing Watershed Flood Resilience Based on a Grid-Scale System Performance Curve That Considers Double Thresholds," Sustainability, MDPI, vol. 16(20), pages 1-23, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:9101-:d:1503003
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/20/9101/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/20/9101/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heather J. Murdock & Karin M. De Bruijn & Berry Gersonius, 2018. "Assessment of Critical Infrastructure Resilience to Flooding Using a Response Curve Approach," Sustainability, MDPI, vol. 10(10), pages 1-22, September.
    2. Jun Rentschler & Paolo Avner & Mattia Marconcini & Rui Su & Emanuele Strano & Michalis Vousdoukas & Stéphane Hallegatte, 2023. "Global evidence of rapid urban growth in flood zones since 1985," Nature, Nature, vol. 622(7981), pages 87-92, October.
    3. Chaochao Li & Xiaotao Cheng & Na Li & Xiaohe Du & Qian Yu & Guangyuan Kan, 2016. "A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas," IJERPH, MDPI, vol. 13(8), pages 1-18, August.
    4. Kerri McClymont & David Morrison & Lindsay Beevers & Esther Carmen, 2020. "Flood resilience: a systematic review," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 63(7), pages 1151-1176, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuyan Fan & Haijun Yu & Sijing He & Chengguang Lai & Xiangyang Li & Xiaotian Jiang, 2024. "The Mitigating Efficacy of Multi-Functional Storage Spaces in Alleviating Urban Floods across Diverse Rainfall Scenarios," Sustainability, MDPI, vol. 16(15), pages 1-18, July.
    2. Belinda Storey & Sally Owen & Christian Zammit & Ilan Noy, 2024. "Insurance retreat in residential properties from future sea level rise in Aotearoa New Zealand," Climatic Change, Springer, vol. 177(3), pages 1-21, March.
    3. Meiyan Gao & Zongmin Wang & Haibo Yang, 2022. "Review of Urban Flood Resilience: Insights from Scientometric and Systematic Analysis," IJERPH, MDPI, vol. 19(14), pages 1-19, July.
    4. Hongshi Xu & Kui Xu & Lingling Bin & Jijian Lian & Chao Ma, 2018. "Joint Risk of Rainfall and Storm Surges during Typhoons in a Coastal City of Haidian Island, China," IJERPH, MDPI, vol. 15(7), pages 1-20, June.
    5. Alejandro H. Drexler & Ralf Meisenzahl, 2024. "Special issue on climate change and natural disasters," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 91(2), pages 255-261, June.
    6. Nabil Touili, 2021. "Hazards, Infrastructure Networks and Unspecific Resilience," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    7. Fatemeh Asghari & Farzad Piadeh & Daniel Egyir & Hossein Yousefi & Joseph P. Rizzuto & Luiza C. Campos & Kourosh Behzadian, 2023. "Resilience Assessment in Urban Water Infrastructure: A Critical Review of Approaches, Strategies and Applications," Sustainability, MDPI, vol. 15(14), pages 1-24, July.
    8. Fabio De Felice & Ilaria Baffo & Antonella Petrillo, 2022. "Critical Infrastructures Overview: Past, Present and Future," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    9. Jie Liu & Xinyu Wang & Gongjing Gao, 2025. "Spatiotemporal Evolution and Determinants of Urban Flood Resilience: A Case Study of Yellow River Basin," Sustainability, MDPI, vol. 17(4), pages 1-22, February.
    10. Tommaso Bragatto & Massimo Cresta & Fabrizio Cortesi & Fabio Massimo Gatta & Alberto Geri & Marco Maccioni & Marco Paulucci, 2019. "Assessment and Possible Solution to Increase Resilience: Flooding Threats in Terni Distribution Grid," Energies, MDPI, vol. 12(4), pages 1-13, February.
    11. Jiayang Li & Ziyi Guo, 2024. "Leveraging Greenspace to Manage Urban Flooding: An Investigation of Nature-Based Solutions Implementation in U.S. Public Parks," Land, MDPI, vol. 13(9), pages 1-22, September.
    12. Shanzhong Qi & Shufen Cao & Shunli Hu & Qian Liu, 2024. "Bibliometric analysis on urban flood and waterlogging disasters during the period of 1998—2022," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 12595-12612, November.
    13. Jingjing Kong & Slobodan P. Simonovic & Chao Zhang, 2019. "Resilience Assessment of Interdependent Infrastructure Systems: A Case Study Based on Different Response Strategies," Sustainability, MDPI, vol. 11(23), pages 1-31, November.
    14. Cailin Li & Na Sun & Yihui Lu & Baoyun Guo & Yue Wang & Xiaokai Sun & Yukai Yao, 2022. "Review on Urban Flood Risk Assessment," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
    15. Bargain, Olivier B. & Vincent, Rose Camille & Caldeira, Emilie, 2025. "Shine a (night)light: Decentralization and economic development in Burkina Faso," World Development, Elsevier, vol. 187(C).
    16. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    17. Maryam Garshasbi & Golam Kabir, 2022. "Earthquake Resilience Framework for a Stormwater Pipe Infrastructure System Integrating the Best Worst Method and Dempster–Shafer Theory," Sustainability, MDPI, vol. 14(5), pages 1-29, February.
    18. Paul, Shuva & Poudyal, Abodh & Poudel, Shiva & Dubey, Anamika & Wang, Zhaoyu, 2024. "Resilience assessment and planning in power distribution systems: Past and future considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    19. Noor Suraya Romali & Sumiliana Sulong & Akiyuki Kawasaki, 2025. "A Systematic Review of Flood Damage Assessment: Insight for the Data-Scarce Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(10), pages 4707-4734, August.
    20. Federico Falasca & Alessandro Marucci, 2024. "Supporting Sustainable Development Goals through Regulation and Maintenance Ecosystem Services," Sustainability, MDPI, vol. 16(16), pages 1-16, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:9101-:d:1503003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.