IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p5859-d1431965.html
   My bibliography  Save this article

Examining Crop Yield Losses in Iğdır Plain Irrigation Systems in Türkiye Amidst Water Constraints

Author

Listed:
  • Yakup Karaaslan

    (Ministry of Agriculture and Forestry, Directorate General for Water Management, Ankara 06000, Türkiye)

Abstract

Water stands as a crucial component of agricultural production. This study aims to propose water efficiency measures in agriculture as an essential element for climate change adaptation. In this study, yield losses in staple crops in agricultural regions are analyzed by using the most suitable methodologies, particularly in agriculture-reliant developing nations. Furthermore, this study seeks to determine the financial consequences of such losses. The methodology applied for this purpose was implemented in Türkiye’s Iğdır Plain, selected as the study site. As the first step, the yields of the first three most cultivated products in each product group were assessed under normal climatic conditions in terms of their crop water requirements and irrigation water requirements. Subsequently, the irrigation water supply was reduced by 10%, and the resulting yield losses were calculated per hectare. Then, the overall crop losses after applying the 10% water constraint were determined in the total cultivation area. Among the crops cultivated in the region, the analysis reveals that clover from the field crops category exhibits the highest water dependence, while apricot demonstrates the least reliance on water resources. As a result, the recommended crop rotation for the Iğdır Plain under water constraints comprises wheat, apricot, watermelon, maize, melon, apple, tomato, peach, and clover. The following measures are proposed to ensure sustainable use of water resources and reduce exposure to climate change: increasing the water transmission efficiency and water use efficiency in irrigation areas, allocating more space to water-stress-resistant crops in the crop pattern in basins, and substituting crops requiring excessive water with less water-dependent crops.

Suggested Citation

  • Yakup Karaaslan, 2024. "Examining Crop Yield Losses in Iğdır Plain Irrigation Systems in Türkiye Amidst Water Constraints," Sustainability, MDPI, vol. 16(14), pages 1-22, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5859-:d:1431965
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/5859/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/5859/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ogata, Ryuji & Mahasneh, Salameh & Alananbeh, Azzam & Fujii, Natsuko, 2022. "Insights into water service quality in Jordan from key performance indicators and consumer perceptions," Utilities Policy, Elsevier, vol. 78(C).
    2. Mahmood Ahmad & Zahoor Ahmed & Xiyue Yang & Muhlis Can, 2023. "Natural Resources Depletion, Financial Risk, and Human Well-Being: What is the Role of Green Innovation and Economic Globalization?," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 167(1), pages 269-288, June.
    3. English, Marshall & Raja, Syed Navaid, 1996. "Perspectives on deficit irrigation," Agricultural Water Management, Elsevier, vol. 32(1), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sezen, S.M. & Yazar, A. & Kapur, B. & Tekin, S., 2011. "Comparison of drip and sprinkler irrigation strategies on sunflower seed and oil yield and quality under Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 98(7), pages 1153-1161, May.
    2. Zand-Parsa, Sh. & Sepaskhah, A. R., 2001. "Optimal applied water and nitrogen for corn," Agricultural Water Management, Elsevier, vol. 52(1), pages 73-85, December.
    3. Li, Li & Wang, Yaosheng & Liu, Fulai, 2021. "Alternate partial root-zone N-fertigation increases water use efficiency and N uptake of barley at elevated CO2," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Mintesinot, B. & Verplancke, H. & Van Ranst, E. & Mitiku, H., 2004. "Examining traditional irrigation methods, irrigation scheduling and alternate furrows irrigation on vertisols in northern Ethiopia," Agricultural Water Management, Elsevier, vol. 64(1), pages 17-27, January.
    5. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    6. Palazzo,Amanda & Valin,Hugo Jean Pierre & Batka,Miroslav & Havlík,Petr, 2019. "Investment Needs for Irrigation Infrastructure along Different Socioeconomic Pathways," Policy Research Working Paper Series 8744, The World Bank.
    7. Sun, Hong-Yong & Liu, Chang-Ming & Zhang, Xi-Ying & Shen, Yan-Jun & Zhang, Yong-Qiang, 2006. "Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 211-218, September.
    8. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    9. Shi, Jianchu & Wu, Xun & Wang, Xiaoyu & Zhang, Mo & Han, Le & Zhang, Wenjing & Liu, Wen & Zuo, Qiang & Wu, Xiaoguang & Zhang, Hongfei & Ben-Gal, Alon, 2020. "Determining threshold values for root-soil water weighted plant water deficit index based smart irrigation," Agricultural Water Management, Elsevier, vol. 230(C).
    10. Guida, Gianpiero & Sellami, Mohamed Houssemeddine & Mistretta, Carmela & Oliva, Marco & Buonomo, Roberta & De Mascellis, Roberto & Patanè, Cristina & Rouphael, Youssef & Albrizio, Rossella & Giorio, P, 2017. "Agronomical, physiological and fruit quality responses of two Italian long-storage tomato landraces under rain-fed and full irrigation conditions," Agricultural Water Management, Elsevier, vol. 180(PA), pages 126-135.
    11. Levan Elbakidze & Brett Schiller & R. Garth Taylor, 2017. "Estimation of Short and Long Run Derived Irrigation Water Demands and Elasticities," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-22, January.
    12. Sarker, Khokan Kumer & Hossain, Akbar & Timsina, Jagadish & Biswas, Sujit Kumar & Malone, Sparkle L. & Alam, Md. Khairul & Loescher, Henry W. & Bazzaz, Mahfuz, 2020. "Alternate furrow irrigation can maintain grain yield and nutrient content, and increase crop water productivity in dry season maize in sub-tropical climate of South Asia," Agricultural Water Management, Elsevier, vol. 238(C).
    13. Agossou Gadedjisso-Tossou & Tamara Avellán & Niels Schütze, 2019. "An Economic-Based Evaluation of Maize Production under Deficit and Supplemental Irrigation for Smallholder Farmers in Northern Togo, West Africa," Resources, MDPI, vol. 8(4), pages 1-11, November.
    14. Cortignani, Raffaele & Severini, Simone, 2009. "Modeling farm-level adoption of deficit irrigation using Positive Mathematical Programming," Agricultural Water Management, Elsevier, vol. 96(12), pages 1785-1791, December.
    15. Oweis, Theib & Hachum, Ahmed, 2006. "Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 57-73, February.
    16. Yang, Chengying & Xin, Xing & Li, Xuetao & Li, Liang, 2024. "Role of natural resource and mineral rent on economic development: Perspective on green reforms and financial management," Resources Policy, Elsevier, vol. 95(C).
    17. Li, Maona & Zhang, Yunlong & Ma, Chizhen & Sun, Hongren & Ren, Wei & Wang, Xianguo, 2023. "Maximizing the water productivity and economic returns of alfalfa by deficit irrigation in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 287(C).
    18. Bekele, Samson & Tilahun, Ketema, 2007. "Regulated deficit irrigation scheduling of onion in a semiarid region of Ethiopia," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 148-152, April.
    19. Wang, Yaosheng & Jensen, Christian R. & Liu, Fulai, 2017. "Nutritional responses to soil drying and rewetting cycles under partial root-zone drying irrigation," Agricultural Water Management, Elsevier, vol. 179(C), pages 254-259.
    20. Abdul Rehman & Luan Jingdong, 2017. "An econometric analysis of major Chinese food crops: An empirical study," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1323372-132, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5859-:d:1431965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.