IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i12p5240-d1418575.html
   My bibliography  Save this article

A Deep Learning-Based Solar Power Generation Forecasting Method Applicable to Multiple Sites

Author

Listed:
  • Seon Young Jang

    (Department of Electronics and Information Engineering, Korea Aerospace University, Goyang-si 10504, Gyeonggi-do, Republic of Korea)

  • Byung Tae Oh

    (Department of Computer Engineering, Korea Aerospace University, Goyang-si 10504, Gyeonggi-do, Republic of Korea)

  • Eunsung Oh

    (Department of Electrical Engineering, College of IT Convergence, Global Campus, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea)

Abstract

This paper addresses the challenge of accurately forecasting solar power generation (SPG) across multiple sites using a single common model. The proposed deep learning-based model is designed to predict SPG for various locations by leveraging a comprehensive dataset from multiple sites in the Republic of Korea. By incorporating common meteorological elements such as temperature, humidity, and cloud cover into its framework, the model uniquely identifies site-specific features to enhance the forecasting accuracy. The key innovation of this model is the integration of a classifier module within the common model framework, enabling it to adapt and predict SPG for both known and unknown sites based on site similarities. This approach allows for the extraction and utilization of site-specific characteristics from shared meteorological data, significantly improving the model’s adaptability and generalization across diverse environmental conditions. The evaluation results demonstrate that the model maintains high performance levels across different SPG sites with minimal performance degradation compared to site-specific models. Notably, the model shows robust forecasting capabilities, even in the absence of target SPG data, highlighting its potential to enhance operational efficiency and support the integration of renewable energy into the power grid, thereby contributing to the global transition towards sustainable energy sources.

Suggested Citation

  • Seon Young Jang & Byung Tae Oh & Eunsung Oh, 2024. "A Deep Learning-Based Solar Power Generation Forecasting Method Applicable to Multiple Sites," Sustainability, MDPI, vol. 16(12), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:5240-:d:1418575
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/12/5240/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/12/5240/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elham M. Al-Ali & Yassine Hajji & Yahia Said & Manel Hleili & Amal M. Alanzi & Ali H. Laatar & Mohamed Atri, 2023. "Solar Energy Production Forecasting Based on a Hybrid CNN-LSTM-Transformer Model," Mathematics, MDPI, vol. 11(3), pages 1-19, January.
    2. Abou Houran, Mohamad & Salman Bukhari, Syed M. & Zafar, Muhammad Hamza & Mansoor, Majad & Chen, Wenjie, 2023. "COA-CNN-LSTM: Coati optimization algorithm-based hybrid deep learning model for PV/wind power forecasting in smart grid applications," Applied Energy, Elsevier, vol. 349(C).
    3. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liuqing Gu & Jian Xu & Deping Ke & Youhan Deng & Xiaojun Hua & Yi Yu, 2024. "Short-Term Output Scenario Generation of Renewable Energy Using Transformer–Wasserstein Generative Adversarial Nets-Gradient Penalty," Sustainability, MDPI, vol. 16(24), pages 1-20, December.
    2. Emmanuel Ejuh Che & Kang Roland Abeng & Chu Donatus Iweh & George J. Tsekouras & Armand Fopah-Lele, 2025. "The Impact of Integrating Variable Renewable Energy Sources into Grid-Connected Power Systems: Challenges, Mitigation Strategies, and Prospects," Energies, MDPI, vol. 18(3), pages 1-31, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Te Li & Mengze Zhang & Yan Zhou, 2024. "LTPNet Integration of Deep Learning and Environmental Decision Support Systems for Renewable Energy Demand Forecasting," Papers 2410.15286, arXiv.org.
    2. Hanif, M.F. & Mi, J., 2024. "Harnessing AI for solar energy: Emergence of transformer models," Applied Energy, Elsevier, vol. 369(C).
    3. Kim, Jimin & Obregon, Josue & Park, Hoonseok & Jung, Jae-Yoon, 2024. "Multi-step photovoltaic power forecasting using transformer and recurrent neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    4. Cheng, Fang & Liu, Hui, 2024. "Multi-step electric vehicles charging loads forecasting: An autoformer variant with feature extraction, frequency enhancement, and error correction blocks," Applied Energy, Elsevier, vol. 376(PB).
    5. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Gong, Ying & Wang, Yongzheng & Xie, Yuanhang & Peng, Xuzhang & Peng, Yan & Zhang, Wenhua, 2025. "Dynamic fusion LSTM-Transformer for prediction in energy harvesting from human motions," Energy, Elsevier, vol. 327(C).
    7. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    8. Gong, Bin & An, Aimin & Shi, Yaoke & Guan, Haijiao & Jia, Wenchao & Yang, Fazhi, 2024. "An interpretable hybrid spatiotemporal fusion method for ultra-short-term photovoltaic power prediction," Energy, Elsevier, vol. 308(C).
    9. Wang, Da & Yang, Mao & Zhang, Wei & Ma, Chenglian & Su, Xin, 2025. "Short-term power prediction method of wind farm cluster based on deep spatiotemporal correlation mining," Applied Energy, Elsevier, vol. 380(C).
    10. Seyed Morteza Moghimi & Thomas Aaron Gulliver & Ilamparithi Thirumarai Chelvan & Hossen Teimoorinia, 2025. "Occupant-Centric Load Optimization in Smart Green Townhouses Using Machine Learning," Energies, MDPI, vol. 18(13), pages 1-15, June.
    11. Jiahui Wang & Mingsheng Jia & Shishi Li & Kang Chen & Cheng Zhang & Xiuyu Song & Qianxi Zhang, 2024. "Short-Term Power-Generation Prediction of High Humidity Island Photovoltaic Power Station Based on a Deep Hybrid Model," Sustainability, MDPI, vol. 16(7), pages 1-24, March.
    12. Peng, Simin & Zhu, Junchao & Wu, Tiezhou & Yuan, Caichenran & Cang, Junjie & Zhang, Kai & Pecht, Michael, 2024. "Prediction of wind and PV power by fusing the multi-stage feature extraction and a PSO-BiLSTM model," Energy, Elsevier, vol. 298(C).
    13. Yang, Mao & Jiang, Yue & Zhang, Wei & Li, Yi & Su, Xin, 2024. "Short-term interval prediction strategy of photovoltaic power based on meteorological reconstruction with spatiotemporal correlation and multi-factor interval constraints," Renewable Energy, Elsevier, vol. 237(PC).
    14. Xu, Aiting & Chen, Jiapeng & Li, Jinchang & Chen, Zheyu & Xu, Shenyi & Nie, Ying, 2025. "Multivariate rolling decomposition hybrid learning paradigm for power load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    15. Mohammed Asloune & Gilles Notton & Cyril Voyant, 2025. "From Trends to Insights: A Text Mining Analysis of Solar Energy Forecasting (2017–2023)," Energies, MDPI, vol. 18(19), pages 1-30, October.
    16. Abu Danish Aiman Bin Abu Sofian & Hooi Ren Lim & Heli Siti Halimatul Munawaroh & Zengling Ma & Kit Wayne Chew & Pau Loke Show, 2024. "Machine learning and the renewable energy revolution: Exploring solar and wind energy solutions for a sustainable future including innovations in energy storage," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(4), pages 3953-3978, August.
    17. Gou, Liangjie & Yang, Zhaozhong & Min, Chao & Yi, Duo & Li, Xiaogang & Kong, Bing, 2024. "A novel domain adaptation method with physical constraints for shale gas production forecasting," Applied Energy, Elsevier, vol. 371(C).
    18. Verdone, Alessio & Panella, Massimo & De Santis, Enrico & Rizzi, Antonello, 2025. "A review of solar and wind energy forecasting: From single-site to multi-site paradigm," Applied Energy, Elsevier, vol. 392(C).
    19. Yang Gao & Xiaohong Zhang & Qingyuan Yan & Yanxue Li, 2025. "Demand Response Strategies for Electric Vehicle Charging and Discharging Behavior Based on Road–Electric Grid Interaction and User Psychology," Sustainability, MDPI, vol. 17(6), pages 1-27, March.
    20. Jinhwa Jeong & Dongkyu Lee & Young Tae Chae, 2023. "A Novel Approach for Day-Ahead Hourly Building-Integrated Photovoltaic Power Prediction by Using Feature Engineering and Simple Weather Forecasting Service," Energies, MDPI, vol. 16(22), pages 1-21, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:5240-:d:1418575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.