IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4134-d1394954.html
   My bibliography  Save this article

Estimation of Centrifugal Pump Efficiency at Variable Frequency for Irrigation Systems

Author

Listed:
  • Dorin Bordeasu

    (Department of Automation and Applied Informatics, Politehnica University of Timisoara, Vasile Parvan, No. 2, 300223 Timisoara, Romania)

  • Florin Dragan

    (Department of Automation and Applied Informatics, Politehnica University of Timisoara, Vasile Parvan, No. 2, 300223 Timisoara, Romania)

  • Ioan Filip

    (Department of Automation and Applied Informatics, Politehnica University of Timisoara, Vasile Parvan, No. 2, 300223 Timisoara, Romania)

  • Iosif Szeidert

    (Department of Automation and Applied Informatics, Politehnica University of Timisoara, Vasile Parvan, No. 2, 300223 Timisoara, Romania)

  • Gelu Ovidiu Tirian

    (Faculty of Engineering of Hunedoara, Politehnica University of Timisoara, Revoluţiei, No. 5, 331128 Hunedoara, Romania)

Abstract

The sustainability of the food production achieved with the help of irrigation systems and the sustainability of their energy consumption are major challenges of the current century. Pumping systems currently account for approximately 30% of global electrical energy consumption. As electricity prices rise, there is a growing need for technological advancements to enhance energy efficiency and reduce consumption costs effectively. This study focuses on operating centrifugal pumps at variable frequency as an effective means of achieving this goal. Most centrifugal pump manufacturers/providers traditionally assume that pump efficiency remains constant across various operating frequencies, often equating the efficiency at various frequencies to that at the standard frequency (50/60 Hz). In contrast, this paper introduces a new formula for estimating pump efficiency, crucial to precise power consumption determination, particularly in variable-frequency scenarios. The formula parameters are identified by using experimental data acquired from an existing pumping system. The tests and results presented in this paper demonstrate that the proposed formula outperforms the formulas of the current industry standards in accuracy. Practically, the new relation assures enhanced accuracy in estimating pump efficiency and absorbed power, allowing for the design of a more precise model used for control systems synthesis required for operating centrifugal pumps at variable frequency. This research offers a new way of calculating pump efficiency, which could be very useful for industry practitioners seeking to optimize energy consumption in pumping systems.

Suggested Citation

  • Dorin Bordeasu & Florin Dragan & Ioan Filip & Iosif Szeidert & Gelu Ovidiu Tirian, 2024. "Estimation of Centrifugal Pump Efficiency at Variable Frequency for Irrigation Systems," Sustainability, MDPI, vol. 16(10), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4134-:d:1394954
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4134/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4134/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Li & Leilei Ji & Weidong Shi & Ling Zhou & Hao Chang & Ramesh K. Agarwal, 2020. "Expansion of High Efficiency Region of Wind Energy Centrifugal Pump Based on Factorial Experiment Design and Computational Fluid Dynamics," Energies, MDPI, vol. 13(2), pages 1-24, January.
    2. Olszewski, Pawel, 2016. "Genetic optimization and experimental verification of complex parallel pumping station with centrifugal pumps," Applied Energy, Elsevier, vol. 178(C), pages 527-539.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Safarbek Oshurbekov & Vadim Kazakbaev & Vladimir Prakht & Vladimir Dmitrievskii, 2021. "Improving Reliability and Energy Efficiency of Three Parallel Pumps by Selecting Trade-Off Operating Points," Mathematics, MDPI, vol. 9(11), pages 1-19, June.
    2. Xiaoli Feng & Baoyun Qiu & Yongxing Wang, 2020. "Optimizing Parallel Pumping Station Operations in an Open-Channel Water Transfer System Using an Efficient Hybrid Algorithm," Energies, MDPI, vol. 13(18), pages 1-19, September.
    3. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    4. Torregrossa, Dario & Hansen, Joachim & Hernández-Sancho, Francesc & Cornelissen, Alex & Schutz, Georges & Leopold, Ulrich, 2017. "A data-driven methodology to support pump performance analysis and energy efficiency optimization in Waste Water Treatment Plants," Applied Energy, Elsevier, vol. 208(C), pages 1430-1440.
    5. Xuetao Wang & Qianchuan Zhao & Yifan Wang, 2020. "A Distributed Optimization Method for Energy Saving of Parallel-Connected Pumps in HVAC Systems," Energies, MDPI, vol. 13(15), pages 1-24, July.
    6. Ji, Leilei & Li, Wei & Shi, Weidong & Chang, Hao & Yang, Zhenyu, 2020. "Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis," Energy, Elsevier, vol. 199(C).
    7. Dorin Bordeașu & Octavian Proștean & Cornel Hatiegan, 2021. "Contributions to Modeling, Simulation and Controlling of a Pumping System Powered by a Wind Energy Conversion System," Energies, MDPI, vol. 14(22), pages 1-18, November.
    8. Wang, Chuan & Shi, Weidong & Wang, Xikun & Jiang, Xiaoping & Yang, Yang & Li, Wei & Zhou, Ling, 2017. "Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics," Applied Energy, Elsevier, vol. 187(C), pages 10-26.
    9. Wang, Zhiyuan & Qian, Zhongdong & Lu, Jie & Wu, Pengfei, 2019. "Effects of flow rate and rotational speed on pressure fluctuations in a double-suction centrifugal pump," Energy, Elsevier, vol. 170(C), pages 212-227.
    10. Leandro Alves Evangelista & Gustavo Meirelles & Bruno Brentan, 2023. "Computational Model of Water Distribution Network Life Cycle Deterioration," Sustainability, MDPI, vol. 15(19), pages 1-14, October.
    11. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    12. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    13. Manickavel Baranidharan & Rassiah Raja Singh, 2022. "AI Energy Optimal Strategy on Variable Speed Drives for Multi-Parallel Aqua Pumping System," Energies, MDPI, vol. 15(12), pages 1-29, June.
    14. Javier R. Ledesma & Rita H. Almeida & Luis Narvarte, 2022. "Modeling and Simulation of Multipumping Photovoltaic Irrigation Systems," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    15. Li, Wei & Ji, Leilei & Li, Enda & Shi, Weidong & Agarwal, Ramesh & Zhou, Ling, 2021. "Numerical investigation of energy loss mechanism of mixed-flow pump under stall condition," Renewable Energy, Elsevier, vol. 167(C), pages 740-760.
    16. Liu, Mingzhe & Ooka, Ryozo & Choi, Wonjun & Ikeda, Shintaro, 2019. "Experimental and numerical investigation of energy saving potential of centralized and decentralized pumping systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Dorin Bordeașu & Octavian Proștean & Ioan Filip & Florin Drăgan & Cristian Vașar, 2022. "Modelling, Simulation and Controlling of a Multi-Pump System with Water Storage Powered by a Fluctuating and Intermittent Power Source," Mathematics, MDPI, vol. 10(21), pages 1-24, October.
    18. Olszewski, Pawel & Arafeh, Jamal, 2018. "Parametric analysis of pumping station with parallel-configured centrifugal pumps towards self-learning applications," Applied Energy, Elsevier, vol. 231(C), pages 1146-1158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4134-:d:1394954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.