IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4026-d1392509.html
   My bibliography  Save this article

Low-Carbon Economic Dispatch of Virtual Power Plants Considering the Combined Operation of Oxygen-Enriched Combustion and Power-to-Ammonia

Author

Listed:
  • Jun He

    (Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China)

  • Zimu Mao

    (Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China)

  • Wentao Huang

    (Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China)

  • Bohan Zhang

    (Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China)

  • Jianbo Xiao

    (Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China)

  • Zuoming Zhang

    (Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China)

  • Xinyu Liu

    (Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China)

Abstract

In order to achieve sustainable development, China has proposed to “strive to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060”. Virtual power plants (VPPs) are an effective means to achieve carbon neutrality goals. In order to improve the economy and low-carbon performance of virtual power plants, this paper proposes a low-carbon economic optimization dispatching model considering the combined operation of oxygen-enriched combustion (OEC) and electricity-to-ammonia (P2A). Firstly, the mechanism of the combined operation of OEC and P2A is proposed. The oxygen-enriched combustion technology can reduce the carbon emissions of the system and enhance the flexibility of the system operation; P2A can effectively consume renewable energy and improve the energy utilization rate. The by-product of the P2A process, oxygen, is the raw material needed for oxygen-enriched combustion, which reflects the complementary nature of the OEC and P2A.Then, an optimal dispatching model is established with the objective function of minimizing the total cost. Finally, the validity of the proposed model is verified by comparing and analyzing the simulation results of five different models. After the introduction of the combined operation of OEC and P2A, the total cost of the system decreases by 10.95%, and the carbon emission decreases by 34.79%.

Suggested Citation

  • Jun He & Zimu Mao & Wentao Huang & Bohan Zhang & Jianbo Xiao & Zuoming Zhang & Xinyu Liu, 2024. "Low-Carbon Economic Dispatch of Virtual Power Plants Considering the Combined Operation of Oxygen-Enriched Combustion and Power-to-Ammonia," Sustainability, MDPI, vol. 16(10), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4026-:d:1392509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4026/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4026/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Fei & Li, Yalou & Zhou, Xiaoxin & Wang, Dandan & Wei, Yawei & Li, Fang, 2023. "Co-optimization of decarbonized operation of coal-fired power plants and seasonal storage based on green ammonia co-firing," Applied Energy, Elsevier, vol. 341(C).
    2. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    3. Zhang, Guangming & Wang, Wei & Chen, Zhenyu & Li, Ruilian & Niu, Yuguang, 2022. "Modeling and optimal dispatch of a carbon-cycle integrated energy system for low-carbon and economic operation," Energy, Elsevier, vol. 240(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    2. Ma, Yixiang & Yu, Lean & Zhang, Guoxing & Lu, Zhiming & Wu, Jiaqian, 2023. "Source-load uncertainty-based multi-objective multi-energy complementary optimal scheduling," Renewable Energy, Elsevier, vol. 219(P1).
    3. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    4. Athanasios Ioannis Arvanitidis & Vivek Agarwal & Miltiadis Alamaniotis, 2023. "Nuclear-Driven Integrated Energy Systems: A State-of-the-Art Review," Energies, MDPI, vol. 16(11), pages 1-23, May.
    5. Gao, Xianhui & Wang, Sheng & Sun, Ying & Zhai, Junyi & Chen, Nan & Zhang, Xiao-Ping, 2024. "Low-carbon energy scheduling for integrated energy systems considering offshore wind power hydrogen production and dynamic hydrogen doping strategy," Applied Energy, Elsevier, vol. 376(PA).
    6. Yunlong Zhang & Panhong Zhang & Sheng Du & Hanlin Dong, 2024. "Economic Optimal Scheduling of Integrated Energy System Considering Wind–Solar Uncertainty and Power to Gas and Carbon Capture and Storage," Energies, MDPI, vol. 17(11), pages 1-26, June.
    7. Feng, Jie & Ran, Lun & Wang, Zhiyuan & Zhang, Mengling, 2024. "Optimal energy scheduling of virtual power plant integrating electric vehicles and energy storage systems under uncertainty," Energy, Elsevier, vol. 309(C).
    8. Tomasz Sikorski & Michal Jasiński & Edyta Ropuszyńska-Surma & Magdalena Węglarz & Dominika Kaczorowska & Paweł Kostyla & Zbigniew Leonowicz & Robert Lis & Jacek Rezmer & Wilhelm Rojewski & Marian Sobi, 2020. "A Case Study on Distributed Energy Resources and Energy-Storage Systems in a Virtual Power Plant Concept: Technical Aspects," Energies, MDPI, vol. 13(12), pages 1-30, June.
    9. Dario Garozzo & Giuseppe Marco Tina, 2020. "Evaluation of the Effective Active Power Reserve for Fast Frequency Response of PV with BESS Inverters Considering Reactive Power Control," Energies, MDPI, vol. 13(13), pages 1-16, July.
    10. Zhou, Hou Sheng & Passey, Rob & Bruce, Anna & Sproul, Alistair B., 2021. "A case study on the behaviour of residential battery energy storage systems during network demand peaks," Renewable Energy, Elsevier, vol. 180(C), pages 712-724.
    11. Riccardo Iacobucci & Benjamin McLellan & Tetsuo Tezuka, 2018. "The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid," Energies, MDPI, vol. 11(8), pages 1-20, August.
    12. Kofi Afrifa Agyeman & Gyeonggak Kim & Hoonyeon Jo & Seunghyeon Park & Sekyung Han, 2020. "An Ensemble Stochastic Forecasting Framework for Variable Distributed Demand Loads," Energies, MDPI, vol. 13(10), pages 1-20, May.
    13. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    14. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    15. He Yin & Hai Lan & Ying-Yi Hong & Zhuangwei Wang & Peng Cheng & Dan Li & Dong Guo, 2023. "A Comprehensive Review of Shipboard Power Systems with New Energy Sources," Energies, MDPI, vol. 16(5), pages 1-44, February.
    16. Li, Ruilian & Zeng, Deliang & Li, Tingting & Ti, Baozhong & Hu, Yong, 2023. "Real-time prediction of SO2 emission concentration under wide range of variable loads by convolution-LSTM VE-transformer," Energy, Elsevier, vol. 269(C).
    17. Ramos, Carmen & García, Ana Salomé & Moreno, Blanca & Díaz, Guzmán, 2019. "Small-scale renewable power technologies are an alternative to reach a sustainable economic growth: Evidence from Spain," Energy, Elsevier, vol. 167(C), pages 13-25.
    18. e Silva, Danilo P. & Félix Salles, José L. & Fardin, Jussara F. & Rocha Pereira, Maxsuel M., 2020. "Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data," Applied Energy, Elsevier, vol. 278(C).
    19. Gao, Xianhui & Wang, Sheng & Sun, Ying & Zhai, Junyi, 2024. "Low-carbon operation of integrated electricity–gas system with hydrogen injection considering hydrogen mixed gas turbine and laddered carbon trading," Applied Energy, Elsevier, vol. 374(C).
    20. Kia, M. & Shafiekhani, M. & Arasteh, H. & Hashemi, S.M. & Shafie-khah, M. & Catalão, J.P.S., 2020. "Short-term operation of microgrids with thermal and electrical loads under different uncertainties using information gap decision theory," Energy, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4026-:d:1392509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.