IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p256-d1308466.html
   My bibliography  Save this article

Utilizing Machine Learning to Examine the Spatiotemporal Changes in Africa’s Partial Atmospheric Layer Thickness

Author

Listed:
  • Chibuike Chiedozie Ibebuchi

    (Department of Geography, Kent State University, Kent, OH 44242, USA)

  • Itohan-Osa Abu

    (Department of Remote Sensing, Würzburg University, 97074 Würzburg, Germany)

  • Clement Nyamekye

    (Department of Civil Engineering, Koforidua Technical University, Koforidua 03420, Ghana)

  • Emmanuel Agyapong

    (Department of Civil Engineering, Koforidua Technical University, Koforidua 03420, Ghana)

  • Linda Boamah

    (Department of Environmental Management and Technology, Koforidua Technical University, Koforidua 03420, Ghana)

Abstract

As a crucial aspect of the climate system, changes in Africa’s atmospheric layer thickness, i.e., the vertical distance spanning a specific layer of the Earth’s atmosphere, could impact its weather, air quality, and ecosystem. This study did not only examine the trends but also applied a deep autoencoder artificial neural network to detect years with significant anomalies in the thickness of Africa’s atmosphere over a given homogeneous region (derived with the rotated principal component analysis) and examine the fingerprint of global warming on the thickness changes. The broader implication of this study is to further categorize regions in Africa that have experienced significant changes in their climate system. The study reveals an upward trend in thickness between 1000 and 850 hPa across substantial parts of Africa since 1950. Notably, the spatial breadth of this rise peaks during the boreal summer. Correlation analysis, further supported by the deep autoencoder neural network, suggests the fingerprint of global warming signals on the increasing vertical extent of Africa’s atmosphere and is more pronounced (since the 2000s) in the south-central regions of Africa (specifically the Congo Basin). Additionally, the thickness over the Sahel and Sahara Desert sees no significant increase during the austral summer, resulting from the counteracting effect of the positive North Atlantic Oscillation, which prompts colder conditions over the northern parts of Africa. As the atmospheric layer thickness impacts the temperature and moisture distribution of the layer, our study contributes to its historical assessment for a sustainable ecosystem.

Suggested Citation

  • Chibuike Chiedozie Ibebuchi & Itohan-Osa Abu & Clement Nyamekye & Emmanuel Agyapong & Linda Boamah, 2023. "Utilizing Machine Learning to Examine the Spatiotemporal Changes in Africa’s Partial Atmospheric Layer Thickness," Sustainability, MDPI, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:256-:d:1308466
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/256/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/256/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edelmann, Dominic & Móri, Tamás F. & Székely, Gábor J., 2021. "On relationships between the Pearson and the distance correlation coefficients," Statistics & Probability Letters, Elsevier, vol. 169(C).
    2. Brian Ayugi & Zablon Weku Shilenje & Hassen Babaousmail & Kenny T. C. Lim Kam Sian & Richard Mumo & Victor Nnamdi Dike & Vedaste Iyakaremye & Abdelghani Chehbouni & Victor Ongoma, 2022. "Projected changes in meteorological drought over East Africa inferred from bias-adjusted CMIP6 models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1151-1176, September.
    3. Rachel James & Richard Washington, 2013. "Changes in African temperature and precipitation associated with degrees of global warming," Climatic Change, Springer, vol. 117(4), pages 859-872, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    2. Asfaw, Solomon & Scognamillo, Antonio & Caprera, Gloria Di & Sitko, Nicholas & Ignaciuk, Adriana, 2019. "Heterogeneous impact of livelihood diversification on household welfare: Cross-country evidence from Sub-Saharan Africa," World Development, Elsevier, vol. 117(C), pages 278-295.
    3. Jacek Czyżewicz & Piotr Jaskólski & Paweł Ziemiański & Marian Piwowarski & Mateusz Bortkiewicz & Krzysztof Laszuk & Ireneusz Galara & Marta Pawłowska & Karol Cybulski, 2022. "Towards Designing an Innovative Industrial Fan: Developing Regression and Neural Models Based on Remote Mass Measurements," Energies, MDPI, vol. 15(7), pages 1-19, March.
    4. Kai Zhang & Shunjie Wang & Shuyu Liu & Kunlun Liu & Jiayu Yan & Xuejia Li, 2022. "Water Environment Quality Evaluation and Pollutant Source Analysis in Tuojiang River Basin, China," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    5. Esha Zaveri & Jason Russ & Amjad Khan & Richard Damania & Edoardo Borgomeo & Anders Jägerskog, 2021. "Ebb and Flow, Volume 1," World Bank Publications - Books, The World Bank Group, number 36089, December.
    6. Qiang Tong & Donghui Li & Xin Ren & Hua Wang & Qing Wu & Li Zhou & Jiaqi Li & Honglu Zhu, 2023. "Classification Method of Photovoltaic Array Operating State Based on Nonparametric Estimation and 3σ Method," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    7. Tianqi Zhang & Yue Zhou & Ming Li & Haoran Zhang & Tong Wang & Yu Tian, 2022. "Impacts of Urbanization on Drainage System Health and Sustainable Drainage Recommendations for Future Scenarios—A Small City Case in China," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    8. Yan Tang & Rui Xu & Mengfan Xie & Yusu Wang & Jian Li & Yi Zhou, 2022. "Spatiotemporal Evolution and Prediction of AOT in Coal Resource Cities: A Case Study of Shanxi Province, China," Sustainability, MDPI, vol. 14(5), pages 1, February.
    9. Wang, Chengcheng & Yang, Hui & Tong, Lige & Nie, Binjian & Zou, Boyang & Guo, Wei & Wang, Li & Ding, Yulong, 2023. "Numerical investigation of a shell-and-tube thermochemical reactor with thermal bridges: Structurale optimization and performance evaluation," Renewable Energy, Elsevier, vol. 206(C), pages 1212-1227.
    10. Manners, Rhys & Vandamme, Elke & Adewopo, Julius & Thornton, Philip & Friedmann, Michael & Carpentier, Sebastien & Ezui, Kodjovi Senam & Thiele, Graham, 2021. "Suitability of root, tuber, and banana crops in Central Africa can be favoured under future climates," Agricultural Systems, Elsevier, vol. 193(C).
    11. Tolera Abdissa Feyissa & Tamene Adugna Demissie & Fokke Saathoff & Alemayehu Gebissa, 2023. "Evaluation of General Circulation Models CMIP6 Performance and Future Climate Change over the Omo River Basin, Ethiopia," Sustainability, MDPI, vol. 15(8), pages 1-37, April.
    12. Oduniyi Oluwaseun Samuel & Antwi Micheal & Busisiwe Nkonki-Mandleni, 2018. "Determinants of Climate Change Awareness among Rural Farming Households in South Africa," Journal of Economics and Behavioral Studies, AMH International, vol. 10(5), pages 116-124.
    13. Jonathan P. Sheppard & Rafael Bohn Reckziegel & Lars Borrass & Paxie W. Chirwa & Claudio J. Cuaranhua & Sibylle K Hassler & Svenja Hoffmeister & Florian Kestel & Rebekka Maier & Mirko Mälicke & Christ, 2020. "Agroforestry: An Appropriate and Sustainable Response to a Changing Climate in Southern Africa?," Sustainability, MDPI, vol. 12(17), pages 1-32, August.
    14. Babatunde J. Abiodun & Romaric C. Odoulami & Windmanagda Sawadogo & Olumuyiwa A. Oloniyo & Abayomi A. Abatan & Mark New & Christopher Lennard & Pinto Izidine & Temitope S. Egbebiyi & Douglas G. MacMar, 2021. "Potential impacts of stratospheric aerosol injection on drought risk managements over major river basins in Africa," Climatic Change, Springer, vol. 169(3), pages 1-19, December.
    15. Zoleka Ncoyini-Manciya & Michael J. Savage, 2022. "The Assessment of Future Air Temperature and Rainfall Changes Based on the Statistical Downscaling Model (SDSM): The Case of the Wartburg Community in KZN Midlands, South Africa," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    16. Hongguo Ren & Lei Zhang & Jing Zhang & Xue Wang & Qingqin Wang, 2024. "Exploration of a Rural Street Environment: The Difference in Sight between Villagers and Tourists," Sustainability, MDPI, vol. 16(7), pages 1-16, March.
    17. Olabisi, Laura Schmitt & Liverpool-Tasie, Saweda & Olajide, Adeola, 2016. "Towards A Systemic Analysis Of The Impacts Of Climate Change On Agricultural Production In Nigeria," Feed the Future Innovation Lab for Food Security Policy Research Papers 259066, Michigan State University, Department of Agricultural, Food, and Resource Economics, Feed the Future Innovation Lab for Food Security (FSP).
    18. Abdulrahman A. Alghamdi & Abdelhameed Ibrahim & El-Sayed M. El-Kenawy & Abdelaziz A. Abdelhamid, 2023. "Renewable Energy Forecasting Based on Stacking Ensemble Model and Al-Biruni Earth Radius Optimization Algorithm," Energies, MDPI, vol. 16(3), pages 1-30, January.
    19. Balcha, Yodit & Macleod, Jamie, 2017. "Climate Change, Agricultural Production and Trade in Africa," Conference papers 332921, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Bola Amoke Awotide & Adebayo Ogunniyi & Kehinde Oluseyi Olagunju & Lateef Olalekan Bello & Amadou Youssouf Coulibaly & Alexander Nimo Wiredu & Bourémo Kone & Aly Ahamadou & Victor Manyong & Tahirou Ab, 2022. "Evaluating the Heterogeneous Impacts of Adoption of Climate-Smart Agricultural Technologies on Rural Households’ Welfare in Mali," Agriculture, MDPI, vol. 12(11), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:256-:d:1308466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.