IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7530-d1139223.html
   My bibliography  Save this article

Mitigation of Nitrous Oxide Emissions from Rice–Wheat Cropping Systems with Sub-Surface Application of Nitrogen Fertilizer and Water-Saving Irrigation

Author

Listed:
  • Yam Kanta Gaihre

    (International Fertilizer Development Center, Muscle Shoals, AL 35661, USA)

  • Wendie D. Bible

    (International Fertilizer Development Center, Muscle Shoals, AL 35661, USA)

  • Upendra Singh

    (International Fertilizer Development Center, Muscle Shoals, AL 35661, USA)

  • Joaquin Sanabria

    (International Fertilizer Development Center, Muscle Shoals, AL 35661, USA)

  • Khagendra Raj Baral

    (Agri-Environment Branch, Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK)

Abstract

Management of nitrogen (N) fertilizer and irrigation can play a critical role to increase nitrogen use efficiency (NUE). However, the impacts of N application at the root zone via urea briquette deep placement (UDP) and water-saving irrigation alternate wetting and drying (AWD) on N 2 O emissions are not well-understood. A greenhouse study was conducted to investigate the impacts of UDP on N 2 O emissions, NUE, and grain yields of rice and wheat compared with broadcast prilled urea (PU). For rice, the effect of UDP was evaluated under continuous flooding (CF) and AWD, while the control (no N) and PU were tested only under CF. In rice, UDP under CF irrigation produced similar emissions to PU-CF, but UDP under AWD irrigation increased emissions by 4.5-fold compared with UDP under CF. UDP under CF irrigation increased ( p < 0.05) rice grain yields and N recovery efficiency (RE) by 26% and 124% compared with PU-CF, respectively. In wheat, UDP had no effects ( p > 0.05) on emissions compared with PU. However, it produced higher wheat grain yields (9%) and RE (35%) over PU. In conclusion, UDP under CF irrigation increases the RE and grain yields of rice without increasing N 2 O emissions, but the yield may reduce and N 2 O emissions may increase under AWD.

Suggested Citation

  • Yam Kanta Gaihre & Wendie D. Bible & Upendra Singh & Joaquin Sanabria & Khagendra Raj Baral, 2023. "Mitigation of Nitrous Oxide Emissions from Rice–Wheat Cropping Systems with Sub-Surface Application of Nitrogen Fertilizer and Water-Saving Irrigation," Sustainability, MDPI, vol. 15(9), pages 1-12, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7530-:d:1139223
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7530/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7530/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hanqin Tian & Rongting Xu & Josep G. Canadell & Rona L. Thompson & Wilfried Winiwarter & Parvadha Suntharalingam & Eric A. Davidson & Philippe Ciais & Robert B. Jackson & Greet Janssens-Maenhout & Mic, 2020. "A comprehensive quantification of global nitrous oxide sources and sinks," Nature, Nature, vol. 586(7828), pages 248-256, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ya Li & Hanqin Tian & Yuanzhi Yao & Hao Shi & Zihao Bian & Yu Shi & Siyuan Wang & Taylor Maavara & Ronny Lauerwald & Shufen Pan, 2024. "Increased nitrous oxide emissions from global lakes and reservoirs since the pre-industrial era," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Aryal, Jeetendra P., 2022. "Contribution of Agriculture to Climate Change and Low-Emission Agricultural Development in Asia and the Pacific," ADBI Working Papers 1340, Asian Development Bank Institute.
    3. Felizitas Winkhart & Thomas Mösl & Harald Schmid & Kurt-Jürgen Hülsbergen, 2022. "Effects of Organic Maize Cropping Systems on Nitrogen Balances and Nitrous Oxide Emissions," Agriculture, MDPI, vol. 12(7), pages 1-30, June.
    4. Florian Kapmeier, 2020. "Reflections on developing a simulation model on sustainable and healthy diets for decision makers: Comment on the paper by Kopainsky," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 928-935, November.
    5. Guofeng Wang & Pu Liu & Jinmiao Hu & Fan Zhang, 2022. "Agriculture-Induced N 2 O Emissions and Reduction Strategies in China," IJERPH, MDPI, vol. 19(19), pages 1-16, September.
    6. Yuan Wang & Zhou Pan & Yue Li & Yaling Lu & Yiming Dong & Liying Ping, 2022. "Optimization of Emission Reduction Target in the Beijing–Tianjin–Hebei Region: An Atmospheric Transfer Coefficient Matrix Perspective," IJERPH, MDPI, vol. 19(20), pages 1-14, October.
    7. Longhui Li & Yue Zhang & Tianjun Zhou & Kaicun Wang & Can Wang & Tao Wang & Linwang Yuan & Kangxin An & Chenghu Zhou & Guonian Lü, 2022. "Mitigation of China’s carbon neutrality to global warming," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Lin Shi & Xiaofei Shi & Fan Yang & Lixue Zhang, 2023. "Spatio-Temporal Difference in Agricultural Eco-Efficiency and Its Influencing Factors Based on the SBM-Tobit Models in the Yangtze River Delta, China," IJERPH, MDPI, vol. 20(6), pages 1-22, March.
    9. Zhong, Jinmei & Song, Yaqi & Yang, Man & Wang, Wei & Li, Zhaohua & Zhao, Liya & Li, Kun & Wang, Ling, 2023. "Strong N2O uptake capacity of paddy soil under different water conditions," Agricultural Water Management, Elsevier, vol. 278(C).
    10. Mohammad Bahram & Mikk Espenberg & Jaan Pärn & Laura Lehtovirta-Morley & Sten Anslan & Kuno Kasak & Urmas Kõljalg & Jaan Liira & Martin Maddison & Mari Moora & Ülo Niinemets & Maarja Öpik & Meelis Pär, 2022. "Structure and function of the soil microbiome underlying N2O emissions from global wetlands," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. E. Harris & L. Yu & Y-P. Wang & J. Mohn & S. Henne & E. Bai & M. Barthel & M. Bauters & P. Boeckx & C. Dorich & M. Farrell & P. B. Krummel & Z. M. Loh & M. Reichstein & J. Six & M. Steinbacher & N. S., 2022. "Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Yunpeng Qiu & Yi Zhang & Kangcheng Zhang & Xinyu Xu & Yunfeng Zhao & Tongshuo Bai & Yexin Zhao & Hao Wang & Xiongjie Sheng & Sean Bloszies & Christopher J. Gillespie & Tangqing He & Yang Wang & Huaiha, 2024. "Intermediate soil acidification induces highest nitrous oxide emissions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Arejacy Antonio Silva & Mário Carvalho & João Coutinho & Ernesto Vasconcelos & David Fangueiro, 2022. "Dairy Slurry Application to Stubble-Covered Soil: A Study on Sustainable Alternatives to Minimize Gaseous Emissions," Agriculture, MDPI, vol. 12(7), pages 1-16, July.
    14. Rajeev Kumar Gupta & Arun Shankar & Bijay-Singh & Rajan Bhatt & Asma A. Al-Huqail & Manzer H. Siddiqui & Ritesh Kumar, 2022. "Precision Nitrogen Management in Bt Cotton ( Gossypium hirsutum ) Improves Seed Cotton Yield and Nitrogen Use Efficiency, and Reduces Nitrous Oxide Emissions," Sustainability, MDPI, vol. 14(4), pages 1-13, February.
    15. Endre Harsányi & Bashar Bashir & Gafar Almhamad & Omar Hijazi & Mona Maze & Ahmed Elbeltagi & Abdullah Alsalman & Glory O. Enaruvbe & Safwan Mohammed & Szilárd Szabó, 2021. "GHGs Emission from the Agricultural Sector within EU-28: A Multivariate Analysis Approach," Energies, MDPI, vol. 14(20), pages 1-18, October.
    16. M. E. Marushchak & J. Kerttula & K. Diáková & A. Faguet & J. Gil & G. Grosse & C. Knoblauch & N. Lashchinskiy & P. J. Martikainen & A. Morgenstern & M. Nykamb & J. G. Ronkainen & H. M. P. Siljanen & L, 2021. "Thawing Yedoma permafrost is a neglected nitrous oxide source," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    17. Panpan Ji & Jianhui Chen & Ruijin Chen & Jianbao Liu & Chaoqing Yu & Fahu Chen, 2024. "Nitrogen and phosphorus trends in lake sediments of China may diverge," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Xianhui S. Wan & Hua-Xia Sheng & Li Liu & Hui Shen & Weiyi Tang & Wenbin Zou & Min N. Xu & Zhenzhen Zheng & Ehui Tan & Mingming Chen & Yao Zhang & Bess B. Ward & Shuh-Ji Kao, 2023. "Particle-associated denitrification is the primary source of N2O in oxic coastal waters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Xiayan Zhang & Jiyang Lv & Yuyang Zhang & Shouguo Li & Xian Chen & Zhipeng Sha, 2023. "A Meta-Analysis Study on the Use of Biochar to Simultaneously Mitigate Emissions of Reactive Nitrogen Gases (N 2 O and NO) from Soils," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    20. Niharika Rahman & Patrick J. Forrestal, 2021. "Ammonium Fertilizer Reduces Nitrous Oxide Emission Compared to Nitrate Fertilizer While Yielding Equally in a Temperate Grassland," Agriculture, MDPI, vol. 11(11), pages 1-12, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7530-:d:1139223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.