IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7483-d1138310.html
   My bibliography  Save this article

Emission Quantification for Sustainable Heavy-Duty Transportation

Author

Listed:
  • Norbert Biró

    (IBIDEN Hungary Kft. Technical Center, Exhaust System Evaluation, 2336 Dunavarsány, Hungary
    Department of Vehicle Technology, Institute of Technology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

  • Péter Kiss

    (Department of Vehicle Technology, Institute of Technology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

Abstract

Vehicles equipped with internal combustion engines (ICE) are major contributors to greenhouse gas (GHG) emissions and dependence on fossil fuels. Alternatives such as electric, hydrogen fuel cell and biofuel-based propulsions are being considered as a replacement for the well-established ICE vehicles to reduce GHG emissions and provide sustainable transportation. This paper will compare various heavy-duty vehicle (HDV) propulsion combinations using a well-to-wheel (WTW) analysis, separated into two parts: Well-to-Tank (WTT) and Tank-to-Wheel (TTW). The WTW analysis of ICE HDV is based on a Euro VI heavy-duty test engine coupled to an engine dynamometer. The energy consumption and GHG emissions are measured, not estimated, providing a closer to real-life comparison. The paper will provide a detailed comparison of alternative propulsions to the internal combustion engine based on WTW analysis. Final results suggest, even with the EU’s fairly fossil energy carrier-dependent energy mix, the usage of electric propulsion systems can reach up to 56% of GHG emission cut compared to conventional ICE.

Suggested Citation

  • Norbert Biró & Péter Kiss, 2023. "Emission Quantification for Sustainable Heavy-Duty Transportation," Sustainability, MDPI, vol. 15(9), pages 1-13, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7483-:d:1138310
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7483/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7483/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Offer, G.J. & Howey, D. & Contestabile, M. & Clague, R. & Brandon, N.P., 2010. "Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system," Energy Policy, Elsevier, vol. 38(1), pages 24-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnieszka Galecka & Mariusz Pyra, 2023. "Analysis of the Objectives of the EU's New Climate and Transport Policy - An Attempt to Identify the Most Significant Challenges for Companies from the Polish Road Transport Sector," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 457-481.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    2. Behiri, Walid & Belmokhtar-Berraf, Sana & Chu, Chengbin, 2018. "Urban freight transport using passenger rail network: Scientific issues and quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 227-245.
    3. Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
    4. Mediavilla, Margarita & de Castro, Carlos & Capellán, Iñigo & Javier Miguel, Luis & Arto, Iñaki & Frechoso, Fernando, 2013. "The transition towards renewable energies: Physical limits and temporal conditions," Energy Policy, Elsevier, vol. 52(C), pages 297-311.
    5. Veronika Kulmer, 2013. "Promoting alternative, environmentally friendly passenger transport technologies: Directed technological change in a bottom-up/top-down CGE model," Graz Economics Papers 2013-02, University of Graz, Department of Economics.
    6. Gianmarco Gottardo & Andrea Basso Peressut & Silvia Colnago & Saverio Latorrata & Luigi Piegari & Giovanni Dotelli, 2023. "LCA of a Proton Exchange Membrane Fuel Cell Electric Vehicle Considering Different Power System Architectures," Energies, MDPI, vol. 16(19), pages 1-19, September.
    7. González Palencia, Juan C. & Furubayashi, Takaaki & Nakata, Toshihiko, 2014. "Techno-economic assessment of lightweight and zero emission vehicles deployment in the passenger car fleet of developing countries," Applied Energy, Elsevier, vol. 123(C), pages 129-142.
    8. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    9. Xiangyang Xu & Xiaoxiao Wu & Mick Jordan & Peng Dong & Yang Liu, 2018. "Coordinated Engine-Start Control of Single-Motor P2 Hybrid Electric Vehicles with Respect to Different Driving Situations," Energies, MDPI, vol. 11(1), pages 1-23, January.
    10. Orsi, Francesco & Muratori, Matteo & Rocco, Matteo & Colombo, Emanuela & Rizzoni, Giorgio, 2016. "A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost," Applied Energy, Elsevier, vol. 169(C), pages 197-209.
    11. Zhang, Hongtao & Li, Xianguo & Liu, Xinzhi & Yan, Jinyue, 2019. "Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management," Applied Energy, Elsevier, vol. 241(C), pages 483-490.
    12. Qinliang Tan & Minnan Wang & Yanming Deng & Haiping Yang & Rao Rao & Xingping Zhang, 2014. "The Cultivation of Electric Vehicles Market in China: Dilemma and Solution," Sustainability, MDPI, vol. 6(8), pages 1-19, August.
    13. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Price promises, trust deficits and energy justice: Public perceptions of hydrogen homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Xie, Shaobo & Lang, Kun & Qi, Shanwei, 2020. "Aerodynamic-aware coordinated control of following speed and power distribution for hybrid electric trucks," Energy, Elsevier, vol. 209(C).
    15. Jordi Perdiguero & Juan Luis Jiménez, 2012. "“Policy options for the promotion of electric vehicles: a review”," IREA Working Papers 201208, University of Barcelona, Research Institute of Applied Economics, revised Mar 2012.
    16. Lázaro V. Cremades & Lluc Canals Casals, 2022. "Analysis of the Future of Mobility: The Battery Electric Vehicle Seems Just a Transitory Alternative," Energies, MDPI, vol. 15(23), pages 1-12, December.
    17. Gao, Jiayang & Zhang, Tao, 2022. "Effects of public funding on the commercial diffusion of on-site hydrogen production technology: A system dynamics perspective," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    18. Morton, Craig & Anable, Jillian & Yeboah, Godwin & Cottrill, Caitlin, 2018. "The spatial pattern of demand in the early market for electric vehicles: Evidence from the United Kingdom," Journal of Transport Geography, Elsevier, vol. 72(C), pages 119-130.
    19. Schuelke-Leech, Beth-Anne, 2014. "Volatility in federal funding of energy R&D," Energy Policy, Elsevier, vol. 67(C), pages 943-950.
    20. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7483-:d:1138310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.