IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6505-d1121133.html
   My bibliography  Save this article

Identification of Urban Functional Areas and Urban Spatial Structure Analysis by Fusing Multi-Source Data Features: A Case Study of Zhengzhou, China

Author

Listed:
  • Jinxin Wang

    (School of Geoscience & Technology, Zhengzhou University, Zhengzhou 450001, China)

  • Chaoran Gao

    (School of Geoscience & Technology, Zhengzhou University, Zhengzhou 450001, China)

  • Manman Wang

    (School of Geoscience & Technology, Zhengzhou University, Zhengzhou 450001, China)

  • Yan Zhang

    (School of Geoscience & Technology, Zhengzhou University, Zhengzhou 450001, China)

Abstract

The identification and delineation of urban functional zones (UFZs), which are the basic units of urban organisms, are crucial for understanding complex urban systems and the rational allocation and management of resources. Points of interest (POI) data are weak in identifying UFZs in areas with low building density and sparse data, whereas remote sensing data lack the necessary semantic information for functional zoning, and single-source data cannot perform a highly comprehensive characterization of complex UFZs. To address these issues, this study proposes a method for identifying UFZs by fusing multi-attribute features from multi-source data and introduces nighttime light and land surface temperature (LST) indicators as functional zoning references, taking the main urban area of Zhengzhou as an example. The experimental results show that the POI data with integrated three-level semantic information can characterize the semantic information of functional areas well, and the incorporation of multi-spectral, nighttime light, and LST data can further improve the recognition accuracy by approximately 10.1% compared with the POI single-source data. The final recognition accuracy and kappa coefficient reached 84.00% and 0.8162, respectively, indicating that the method is largely consistent with the actual situation and is feasible. The analysis showed that the main urban area of Zhengzhou as a whole is characterized by the coordinated development of single and mixed functional areas, in which a distinct residential-commercial-public complex is formed, and the urban functional areas on the block scale have diverse attributes. This study can provide a decision-making reference for the future development planning and management of Zhengzhou, China.

Suggested Citation

  • Jinxin Wang & Chaoran Gao & Manman Wang & Yan Zhang, 2023. "Identification of Urban Functional Areas and Urban Spatial Structure Analysis by Fusing Multi-Source Data Features: A Case Study of Zhengzhou, China," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6505-:d:1121133
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6505/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6505/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Xiaolei & Liu, Mingxi & Sima, Zeqian, 2020. "A novel cryptocurrency price trend forecasting model based on LightGBM," Finance Research Letters, Elsevier, vol. 32(C).
    2. Liu, Xi & Gong, Li & Gong, Yongxi & Liu, Yu, 2015. "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 78-90.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yamashiro, Hirochika & Nonaka, Hirofumi, 2021. "Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem," Operations Research Perspectives, Elsevier, vol. 8(C).
    2. Benjamin Davies & David C. Maré, 2020. "Delineating functional labour market areas with estimable classification stabilities," Working Papers 20_08, Motu Economic and Public Policy Research.
    3. He, Yifan & Zhao, Chen & Zeng, An, 2022. "Ranking locations in a city via the collective home-work relations in human mobility data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    4. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    5. Alireza Rezazadeh & Yasamin Jafarian & Ali Kord, 2022. "Explainable Ensemble Machine Learning for Breast Cancer Diagnosis Based on Ultrasound Image Texture Features," Forecasting, MDPI, vol. 4(1), pages 1-13, February.
    6. Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
    7. Kirtonia, Sajeeb & Sun, Yanshuo, 2022. "Evaluating rail transit's comparative advantages in travel cost and time over taxi with open data in two U.S. cities," Transport Policy, Elsevier, vol. 115(C), pages 75-87.
    8. Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    9. Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
    10. Vaia I. Kontopoulou & Athanasios D. Panagopoulos & Ioannis Kakkos & George K. Matsopoulos, 2023. "A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks," Future Internet, MDPI, vol. 15(8), pages 1-31, July.
    11. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    12. Ting Wang & Yong Zhang & Meiye Li & Lei Liu, 2019. "How Do Passengers with Different Using Frequencies Choose between Traditional Taxi Service and Online Car-Hailing Service? A Case Study of Nanjing, China," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    13. Cai, Hua & Zhan, Xiaowei & Zhu, Ji & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2016. "Understanding taxi travel patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 590-597.
    14. Changhee Kim & Soo Wook Kim & Hee Jay Kang & Seung-Min Song, 2017. "What Makes Urban Transportation Efficient? Evidence from Subway Transfer Stations in Korea," Sustainability, MDPI, vol. 9(11), pages 1-18, November.
    15. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    16. Li, Xijing & Ma, Xinlin & Wilson, Bev, 2021. "Beyond absolute space: An exploration of relative and relational space in Shanghai using taxi trajectory data," Journal of Transport Geography, Elsevier, vol. 93(C).
    17. Joseph, Lucy & Neven, An & Martens, Karel & Kweka, Opportuna & Wets, Geert & Janssens, Davy, 2020. "Measuring individuals' travel behaviour by use of a GPS-based smartphone application in Dar es Salaam, Tanzania," Journal of Transport Geography, Elsevier, vol. 88(C).
    18. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
    19. Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
    20. Apantri Peungnumsai & Apichon Witayangkurn & Masahiko Nagai & Hiroyuki Miyazaki, 2018. "A Taxi Zoning Analysis Using Large-Scale Probe Data: A Case Study for Metropolitan Bangkok," The Review of Socionetwork Strategies, Springer, vol. 12(1), pages 21-45, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6505-:d:1121133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.