IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p6088-d1113205.html
   My bibliography  Save this article

Optimization-Driven Machine Learning Approach for the Prediction of Hydrochar Properties from Municipal Solid Waste

Author

Listed:
  • Parthasarathy Velusamy

    (Department of Computer Science and Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, India
    These authors contributed equally to this work.)

  • Jagadeesan Srinivasan

    (School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India)

  • Nithyaselvakumari Subramanian

    (Department of Biomedical Engineering, Saveetha School of Engineering, Chennai 602105, India)

  • Rakesh Kumar Mahendran

    (Department of Computer Science and Engineering, School of Computing, Rajalakshmi Engineering College, Chennai 602105, India)

  • Muhammad Qaiser Saleem

    (College of Computer Science and Information Technology, Al Baha University, Al Baha 1988, Saudi Arabia)

  • Maqbool Ahmad

    (School of Digital Convergence Business, University of Central Punjab, Rawalpindi 46000, Pakistan
    These authors contributed equally to this work.)

  • Muhammad Shafiq

    (Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea)

  • Jin-Ghoo Choi

    (Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea)

Abstract

Municipal solid waste (MSW) management is an essential element of present-day society. The proper storage and disposal of solid waste is critical to public health, safety, and environmental performance. The direct recovery of MSW into useful energy is a critical task. In addition, the demand for conventional power supplies is high. As a strategy to solve these two problems, the technology to directly convert municipal solid waste into conventional energy to replace fossil fuels has been obtained. The hydrothermal carbonization (HTC) process is a thermochemical conversion process that utilizes heat to convert wet biomass feedstocks into hydrochar. Hydrochar with premium gasoline properties is used for fuel combustion for strength. The properties of fuel hydrochar, including C char (carbon content), HHV (higher heating value), and yield, are mainly based on the properties of the MSW. This study aimed to predict the properties of fuel hydrochar using a machine learning (ML) model. We employed an ensemble support vector machine (E-SVM) as the classifier, which was combined with the slime mode algorithm (SMA) for optimization and developed based on 281 data points. The model was primarily trained and tested on a fusion of three datasets: sewage sludge, leftovers, and cow dung. The proposed ESVM_SMA model achieved an excellent overall performance with an average R 2 of 0.94 and RMSE of 2.62.

Suggested Citation

  • Parthasarathy Velusamy & Jagadeesan Srinivasan & Nithyaselvakumari Subramanian & Rakesh Kumar Mahendran & Muhammad Qaiser Saleem & Maqbool Ahmad & Muhammad Shafiq & Jin-Ghoo Choi, 2023. "Optimization-Driven Machine Learning Approach for the Prediction of Hydrochar Properties from Municipal Solid Waste," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6088-:d:1113205
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/6088/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/6088/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mau, Vivian & Gross, Amit, 2018. "Energy conversion and gas emissions from production and combustion of poultry-litter-derived hydrochar and biochar," Applied Energy, Elsevier, vol. 213(C), pages 510-519.
    2. Abdur Rehman Riaz & Syed Mushhad M. Gilani & Salman Naseer & Sami Alshmrany & Muhammad Shafiq & Jin-Ghoo Choi, 2022. "Applying Adaptive Security Techniques for Risk Analysis of Internet of Things (IoT)-Based Smart Agriculture," Sustainability, MDPI, vol. 14(17), pages 1-20, September.
    3. Liu, Zhengang & Quek, Augustine & Balasubramanian, R., 2014. "Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars," Applied Energy, Elsevier, vol. 113(C), pages 1315-1322.
    4. Ma, Jing & Chen, Mengjun & Yang, Tianxue & Liu, Zhengang & Jiao, Wentao & Li, Dong & Gai, Chao, 2019. "Gasification performance of the hydrochar derived from co-hydrothermal carbonization of sewage sludge and sawdust," Energy, Elsevier, vol. 173(C), pages 732-739.
    5. Xuejun Qian & Seong Lee & Ana-maria Soto & Guangming Chen, 2018. "Regression Model to Predict the Higher Heating Value of Poultry Waste from Proximate Analysis," Resources, MDPI, vol. 7(3), pages 1-14, June.
    6. Li, Hui & Liu, Xinhua & Legros, Robert & Bi, Xiaotao T. & Jim Lim, C. & Sokhansanj, Shahab, 2012. "Pelletization of torrefied sawdust and properties of torrefied pellets," Applied Energy, Elsevier, vol. 93(C), pages 680-685.
    7. Syed Atif Bokhari & Zafeer Saqib & Sarah Amir & Salman Naseer & Muhammad Shafiq & Amjad Ali & Muhammad Zaman-ul-Haq & Azeem Irshad & Habib Hamam, 2022. "Assessing Land Cover Transformation for Urban Environmental Sustainability through Satellite Sensing," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    8. Li, Jie & Pan, Lanjia & Suvarna, Manu & Tong, Yen Wah & Wang, Xiaonan, 2020. "Fuel properties of hydrochar and pyrochar: Prediction and exploration with machine learning," Applied Energy, Elsevier, vol. 269(C).
    9. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaotong Pan & Jian Tang & Heng Xia & Tianzheng Wang, 2023. "Online Combustion Status Recognition of Municipal Solid Waste Incineration Process Using DFC Based on Convolutional Multi-Layer Feature Fusion," Sustainability, MDPI, vol. 15(23), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jie & Pan, Lanjia & Suvarna, Manu & Tong, Yen Wah & Wang, Xiaonan, 2020. "Fuel properties of hydrochar and pyrochar: Prediction and exploration with machine learning," Applied Energy, Elsevier, vol. 269(C).
    2. Riva, Lorenzo & Nielsen, Henrik Kofoed & Skreiberg, Øyvind & Wang, Liang & Bartocci, Pietro & Barbanera, Marco & Bidini, Gianni & Fantozzi, Francesco, 2019. "Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke," Applied Energy, Elsevier, vol. 256(C).
    3. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    4. Muhammet Enes Önür & Kamil Ekinci & Mihriban Civan & Mehmet Emin Bilgili & Sema Yurdakul, 2023. "Quality Properties and Torrefaction Characteristics of Pellets: Rose Oil Distillation Solid Waste and Red Pine Sawdust," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    5. González, William A. & López, Diana & Pérez, Juan F., 2020. "Biofuel quality analysis of fallen leaf pellets: Effect of moisture and glycerol contents as binders," Renewable Energy, Elsevier, vol. 147(P1), pages 1139-1150.
    6. Zhu, Youjian & Yang, Wei & Fan, Jiyuan & Kan, Tao & Zhang, Wennan & Liu, Heng & Cheng, Wei & Yang, Haiping & Wu, Xuehong & Chen, Hanping, 2018. "Effect of sodium carboxymethyl cellulose addition on particulate matter emissions during biomass pellet combustion," Applied Energy, Elsevier, vol. 230(C), pages 925-934.
    7. Li, Jie & Suvarna, Manu & Pan, Lanjia & Zhao, Yingru & Wang, Xiaonan, 2021. "A hybrid data-driven and mechanistic modelling approach for hydrothermal gasification," Applied Energy, Elsevier, vol. 304(C).
    8. Ma, Jiao & Feng, Shuo & Shen, Xiaoqian & Zhang, Zhikun & Wang, Zhuozhi & Kong, Wenwen & Yuan, Peng & Shen, Boxiong & Mu, Lan, 2021. "Integration of the pelletization and combustion of biodried products derived from municipal organic wastes: The influences of compression temperature and pressure," Energy, Elsevier, vol. 219(C).
    9. Rudolfsson, Magnus & Larsson, Sylvia H. & Lestander, Torbjörn A., 2017. "New tool for improved control of sub-process interactions in rotating ring die pelletizing of torrefied biomass," Applied Energy, Elsevier, vol. 190(C), pages 835-840.
    10. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability,, Springer.
    11. Song, Xiaobing & Zhang, Shouyu & Wu, Yuanmo & Cao, Zhongyao, 2020. "Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust," Renewable Energy, Elsevier, vol. 151(C), pages 184-191.
    12. Ali Mohammadi & G. Venkatesh & Maria Sandberg & Samieh Eskandari & Stephen Joseph & Karin Granström, 2020. "A Comprehensive Environmental Life Cycle Assessment of the Use of Hydrochar Pellets in Combined Heat and Power Plants," Sustainability, MDPI, vol. 12(21), pages 1-15, October.
    13. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    14. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    15. Victor Arruda Ferraz de Campos & Luís Carmo-Calado & Roberta Mota-Panizio & Vitor Matos & Valter Bruno Silva & Paulo S. Brito & Daniela F. L. Eusébio & Celso Eduardo Tuna & José Luz Silveira, 2023. "A Waste-to-Energy Technical Approach: Syngas–Biodiesel Blend for Power Generation," Energies, MDPI, vol. 16(21), pages 1-18, October.
    16. Kathleen Meisel & Andreas Clemens & Christoph Fühner & Marc Breulmann & Stefan Majer & Daniela Thrän, 2019. "Comparative Life Cycle Assessment of HTC Concepts Valorizing Sewage Sludge for Energetic and Agricultural Use," Energies, MDPI, vol. 12(5), pages 1-16, February.
    17. Wang, Zhentong & Gong, Zhiqiang & Wang, Wei & Zhang, Zhe, 2020. "Study on combustion characteristics and the migration of heavy metals during the co-combustion of oil sludge char and microalgae residue," Renewable Energy, Elsevier, vol. 151(C), pages 648-658.
    18. Yu-Chiao Lu & Liviu Brabie & Andrey V. Karasev & Chuan Wang, 2022. "Applications of Hydrochar and Charcoal in the Iron and Steelmaking Industry—Part 2: Carburization of Liquid Iron by Addition of Iron–Carbon Briquettes," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    19. Yu, Yang & Lei, Zhongfang & Yang, Xi & Yang, Xiaojing & Huang, Weiwei & Shimizu, Kazuya & Zhang, Zhenya, 2018. "Hydrothermal carbonization of anaerobic granular sludge: Effect of process temperature on nutrients availability and energy gain from produced hydrochar," Applied Energy, Elsevier, vol. 229(C), pages 88-95.
    20. Struhs, Ethan & Mirkouei, Amin & You, Yaqi & Mohajeri, Amir, 2020. "Techno-economic and environmental assessments for nutrient-rich biochar production from cattle manure: A case study in Idaho, USA," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6088-:d:1113205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.