IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p4984-d1094100.html
   My bibliography  Save this article

Spatial and Temporal Study of Supernatant Process Water Pond in Tailings Storage Facilities: Use of Remote Sensing Techniques for Preventing Mine Tailings Dam Failures

Author

Listed:
  • Carlos Cacciuttolo

    (Civil Works and Geology Department, Catholic University of Temuco, Temuco 4780000, Chile)

  • Deyvis Cano

    (Programa Académico de Ingeniería Ambiental, Universidad de Huánuco, Huánuco 10001, Peru)

Abstract

Considering the global impact on society due to tailings storage facilities (TSFs) accidents, this article describes a study to monitor mine tailings management and prevent mining tailings dam failures, considering the analysis of different TSFs real cases. The spatial and temporal dynamic behavior of the supernatant process water pond of the TSFs is studied as a critical issue, using remote sensing techniques based on multispectral satellite imagery. To understand the current state of the art, a brief description of engineering studies for the control and management of the supernatant process water pond in TSFs is presented. This research considers the main method of the study of practical cases with the use of techniques of multispectral interpretation of satellite images from the Sentinel 2 remote sensor. In addition, the management of tools such as Geographical Information System (GIS) and Google Earth Engine (GEE) is implemented, as well as the application of some spectral indices such as NDWI and the joint use of (i) NDVI, (ii) mNDWI, and (iii) EVI. Real TSF cases are analyzed, including the dam failures of Jagersfontain TSF in South Africa and Williamson TSF in Tanzania. Finally, this article concludes that the size, location, and temporal variability of the supernatant process water pond within a TSF has a direct impact on safety and the possible potential risk of the physical instability of tailings dams.

Suggested Citation

  • Carlos Cacciuttolo & Deyvis Cano, 2023. "Spatial and Temporal Study of Supernatant Process Water Pond in Tailings Storage Facilities: Use of Remote Sensing Techniques for Preventing Mine Tailings Dam Failures," Sustainability, MDPI, vol. 15(6), pages 1-32, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4984-:d:1094100
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/4984/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/4984/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schoenberger, Erica, 2016. "Environmentally sustainable mining: The case of tailings storage facilities," Resources Policy, Elsevier, vol. 49(C), pages 119-128.
    2. Armstrong, Margaret & Petter, Renato & Petter, Carlos, 2019. "Why have so many tailings dams failed in recent years?," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    3. Franks, Daniel M. & Boger, David V. & Côte, Claire M. & Mulligan, David R., 2011. "Sustainable development principles for the disposal of mining and mineral processing wastes," Resources Policy, Elsevier, vol. 36(2), pages 114-122, June.
    4. Sören Lars Nungesser & Stefan Pauliuk, 2022. "Modelling Hazard for Tailings Dam Failures at Copper Mines in Global Supply Chains," Resources, MDPI, vol. 11(10), pages 1-27, October.
    5. Deanna Kemp & John R. Owen & Éléonore Lèbre, 2021. "Tailings facility failures in the global mining industry: Will a ‘transparency turn’ drive change?," Business Strategy and the Environment, Wiley Blackwell, vol. 30(1), pages 122-134, January.
    6. Margaret Armstrong & Nicolas Langrené & Renato Petter & Wen Chen & Carlos Petter, 2019. "Accounting for tailings dam failures in the valuation of mining projects," Post-Print hal-02909376, HAL.
    7. Carlos Cacciuttolo Vargas & Alex Marinovic Pulido, 2022. "Sustainable Management of Thickened Tailings in Chile and Peru: A Review of Practical Experience and Socio-Environmental Acceptance," Sustainability, MDPI, vol. 14(17), pages 1-65, August.
    8. Araya, Natalia & Ramírez, Yendery & Cisternas, Luis A. & Kraslawski, Andrzej, 2021. "Use of real options to enhance water-energy nexus in mine tailings management," Applied Energy, Elsevier, vol. 303(C).
    9. Armstrong, Margaret & Langrené, Nicolas & Petter, Renato & Chen, Wen & Petter, Carlos, 2019. "Accounting for tailings dam failures in the valuation of mining projects," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    10. Ojeda-Pereira, Iván & Campos-Medina, Fernando, 2021. "International trends in mining tailings publications: A descriptive bibliometric study," Resources Policy, Elsevier, vol. 74(C).
    11. Carlos Cacciuttolo & Edison Atencio, 2022. "Past, Present, and Future of Copper Mine Tailings Governance in Chile (1905–2022): A Review in One of the Leading Mining Countries in the World," IJERPH, MDPI, vol. 19(20), pages 1-41, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Cacciuttolo & Alex Marinovic, 2023. "Experiences of Underground Mine Backfilling Using Mine Tailings Developed in the Andean Region of Peru: A Green Mining Solution to Reduce Socio-Environmental Impacts," Sustainability, MDPI, vol. 15(17), pages 1-27, August.
    2. Meihong Zhi & Yun Zhu & Ji-Cheng Jang & Shuxiao Wang & Pen-Chi Chiang & Chuang Su & Shenglun Liang & Ying Li & Yingzhi Yuan, 2023. "Analysis of Storage Capacity Change and Dam Failure Risk for Tailings Ponds Using WebGIS-Based UAV 3D Image," Sustainability, MDPI, vol. 15(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Cacciuttolo & Alex Marinovic, 2023. "Experiences of Underground Mine Backfilling Using Mine Tailings Developed in the Andean Region of Peru: A Green Mining Solution to Reduce Socio-Environmental Impacts," Sustainability, MDPI, vol. 15(17), pages 1-27, August.
    2. Cox, Benjamin & Innis, Sally & Mortaza, Adnan & Kunz, Nadja C. & Steen, John, 2022. "A unified metric for costing tailings dams and the consequences for tailings management," Resources Policy, Elsevier, vol. 78(C).
    3. Carlos Cacciuttolo & Edison Atencio, 2022. "Past, Present, and Future of Copper Mine Tailings Governance in Chile (1905–2022): A Review in One of the Leading Mining Countries in the World," IJERPH, MDPI, vol. 19(20), pages 1-41, October.
    4. Carlos Cacciuttolo Vargas & Alex Marinovic Pulido, 2022. "Sustainable Management of Thickened Tailings in Chile and Peru: A Review of Practical Experience and Socio-Environmental Acceptance," Sustainability, MDPI, vol. 14(17), pages 1-65, August.
    5. Ojeda-Pereira, Iván & Campos-Medina, Fernando, 2021. "International trends in mining tailings publications: A descriptive bibliometric study," Resources Policy, Elsevier, vol. 74(C).
    6. Rudolf Suppes & Soraya Heuss-Aßbichler, 2021. "How to Identify Potentials and Barriers of Raw Materials Recovery from Tailings? Part II: A Practical UNFC-Compliant Approach to Assess Project Sustainability with On-Site Exploration Data," Resources, MDPI, vol. 10(11), pages 1-48, October.
    7. Garbarino, Elena & Orveillon, Glenn & Saveyn, Hans G.M., 2020. "Management of waste from extractive industries: The new European reference document on the Best Available Techniques," Resources Policy, Elsevier, vol. 69(C).
    8. Sally Innis & Negar Ghahramani & Nahyan Rana & Scott McDougall & Stephen G. Evans & W. Andy Take & Nadja C. Kunz, 2022. "The Development and Demonstration of a Semi-Automated Regional Hazard Mapping Tool for Tailings Storage Facility Failures," Resources, MDPI, vol. 11(10), pages 1-20, September.
    9. Endl, Andreas & Tost, Michael & Hitch, Michael & Moser, Peter & Feiel, Susanne, 2021. "Europe's mining innovation trends and their contribution to the sustainable development goals: Blind spots and strong points," Resources Policy, Elsevier, vol. 74(C).
    10. Kévin Nadarajah & Laurent Brun & Stéphanie Bordel & Emeline Ah-Tchine & Anissa Dumesnil & Antoine Marques Mourato & Jacques Py & Laurent Jammes & Xavier Arnauld De Sartre & Alain Somat, 2024. "A Three-Stage Psychosocial Engineering-Based Method to Support Controversy and Promote Mutual Understanding between Stakeholders: The Case of CO 2 Geological Storage," Energies, MDPI, vol. 17(5), pages 1-15, February.
    11. Devenin, Verónica, 2021. "Collaborative community development in mining regions: The Calama Plus and Creo Antofagasta programs in Chile," Resources Policy, Elsevier, vol. 70(C).
    12. Muibat Omotola Fashola & Veronica Mpode Ngole-Jeme & Olubukola Oluranti Babalola, 2016. "Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance," IJERPH, MDPI, vol. 13(11), pages 1-20, October.
    13. Juliana Segura-Salazar & Luís Marcelo Tavares, 2018. "Sustainability in the Minerals Industry: Seeking a Consensus on Its Meaning," Sustainability, MDPI, vol. 10(5), pages 1-38, May.
    14. Lèbre, Éléonore & Owen, John R. & Kemp, Deanna & Valenta, Rick K., 2022. "Complex orebodies and future global metal supply: An introduction," Resources Policy, Elsevier, vol. 77(C).
    15. Gustavo Lagos & David Peters & Marcos Lima & José Joaquín Jara, 2020. "Potential copper production through 2035 in Chile," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 43-56, July.
    16. Araya, Natalia & Ramírez, Yendery & Cisternas, Luis A. & Kraslawski, Andrzej, 2021. "Use of real options to enhance water-energy nexus in mine tailings management," Applied Energy, Elsevier, vol. 303(C).
    17. World Bank, 2014. "Enhancing Environmental and Social Sustainability of Mining in Armenia," World Bank Publications - Reports 18957, The World Bank Group.
    18. Elisabeth Christen & Klaus S. Friesenbichler & Alexander Hudetz & Claudia Kettner-Marx & Ina Meyer & Franz Sinabell, 2021. "Außenhandel und nachhaltige Entwicklung in Österreich. Befunde auf der Grundlage von vorliegenden Quellen," WIFO Studies, WIFO, number 69290, April.
    19. Shahba, Sudabe & Arjmandi, Reza & Monavari, Masoud & Ghodusi, Jamal, 2017. "Application of multi-attribute decision-making methods in SWOT analysis of mine waste management (case study: Sirjan's Golgohar iron mine, Iran)," Resources Policy, Elsevier, vol. 51(C), pages 67-76.
    20. Schoenberger, Erica, 2016. "Environmentally sustainable mining: The case of tailings storage facilities," Resources Policy, Elsevier, vol. 49(C), pages 119-128.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4984-:d:1094100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.