IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10901-d903435.html
   My bibliography  Save this article

Sustainable Management of Thickened Tailings in Chile and Peru: A Review of Practical Experience and Socio-Environmental Acceptance

Author

Listed:
  • Carlos Cacciuttolo Vargas

    (Civil Works and Geology Department, Catholic University of Temuco, Temuco 4780000, Chile)

  • Alex Marinovic Pulido

    (Facultad de Ingeniería, Universidad Privada del Norte, Cajamarca 06001, Peru)

Abstract

The “Thickened Tailings Disposal” (TTD) technology produces a high density mine waste that allows for the storage of this material without the need to manage large slurry tailings storage facilities (TSFs) and large dams. TTD has been applied considering site specific conditions of Chile and Peru, such as extreme climatic conditions, seismic risks, water scarcity, community demands, and environmental constraints. This review highlights the contribution of several experiences in Chile and Peru, which have chosen TTD technology for reduction of negative environmental impacts, mainly focusing on the following issues: (i) increase of tailings water recovery, (ii) reduction of TSFs footprint (impacted areas), (iii) decrease the risk of physical instability, avoiding the construction of high dams, and (iv) decrease of TSFs seepages. Finally, the article describes the advantages (benefits) and disadvantages (aspects to improve) of TTD, where nowadays a high degree of dewatering of tailings is seen as a safe option, considering the occurrence of some TSF dam failures recently worldwide, which has resulted in severe environmental pollution. A better environmental perception about TTD of authorities and communities, considering that this technology allows to satisfy the needs of stable and safe TSFs, make the TTD be more acceptable, popular and one of the best available technologies (BATs) for operations with mine tailings.

Suggested Citation

  • Carlos Cacciuttolo Vargas & Alex Marinovic Pulido, 2022. "Sustainable Management of Thickened Tailings in Chile and Peru: A Review of Practical Experience and Socio-Environmental Acceptance," Sustainability, MDPI, vol. 14(17), pages 1-65, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10901-:d:903435
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10901/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10901/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schoenberger, Erica, 2016. "Environmentally sustainable mining: The case of tailings storage facilities," Resources Policy, Elsevier, vol. 49(C), pages 119-128.
    2. Franks, Daniel M. & Boger, David V. & Côte, Claire M. & Mulligan, David R., 2011. "Sustainable development principles for the disposal of mining and mineral processing wastes," Resources Policy, Elsevier, vol. 36(2), pages 114-122, June.
    3. Araya, Natalia & Ramírez, Yendery & Cisternas, Luis A. & Kraslawski, Andrzej, 2021. "Use of real options to enhance water-energy nexus in mine tailings management," Applied Energy, Elsevier, vol. 303(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Cacciuttolo & Deyvis Cano, 2023. "Spatial and Temporal Study of Supernatant Process Water Pond in Tailings Storage Facilities: Use of Remote Sensing Techniques for Preventing Mine Tailings Dam Failures," Sustainability, MDPI, vol. 15(6), pages 1-32, March.
    2. Carlos Cacciuttolo & Alex Marinovic, 2023. "Experiences of Underground Mine Backfilling Using Mine Tailings Developed in the Andean Region of Peru: A Green Mining Solution to Reduce Socio-Environmental Impacts," Sustainability, MDPI, vol. 15(17), pages 1-27, August.
    3. Carlos Cacciuttolo & Edison Atencio, 2022. "Past, Present, and Future of Copper Mine Tailings Governance in Chile (1905–2022): A Review in One of the Leading Mining Countries in the World," IJERPH, MDPI, vol. 19(20), pages 1-41, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Cacciuttolo & Edison Atencio, 2022. "Past, Present, and Future of Copper Mine Tailings Governance in Chile (1905–2022): A Review in One of the Leading Mining Countries in the World," IJERPH, MDPI, vol. 19(20), pages 1-41, October.
    2. Carlos Cacciuttolo & Deyvis Cano, 2023. "Spatial and Temporal Study of Supernatant Process Water Pond in Tailings Storage Facilities: Use of Remote Sensing Techniques for Preventing Mine Tailings Dam Failures," Sustainability, MDPI, vol. 15(6), pages 1-32, March.
    3. Ojeda-Pereira, Iván & Campos-Medina, Fernando, 2021. "International trends in mining tailings publications: A descriptive bibliometric study," Resources Policy, Elsevier, vol. 74(C).
    4. Carlos Cacciuttolo & Alex Marinovic, 2023. "Experiences of Underground Mine Backfilling Using Mine Tailings Developed in the Andean Region of Peru: A Green Mining Solution to Reduce Socio-Environmental Impacts," Sustainability, MDPI, vol. 15(17), pages 1-27, August.
    5. Rudolf Suppes & Soraya Heuss-Aßbichler, 2021. "How to Identify Potentials and Barriers of Raw Materials Recovery from Tailings? Part II: A Practical UNFC-Compliant Approach to Assess Project Sustainability with On-Site Exploration Data," Resources, MDPI, vol. 10(11), pages 1-48, October.
    6. Garbarino, Elena & Orveillon, Glenn & Saveyn, Hans G.M., 2020. "Management of waste from extractive industries: The new European reference document on the Best Available Techniques," Resources Policy, Elsevier, vol. 69(C).
    7. Cox, Benjamin & Innis, Sally & Mortaza, Adnan & Kunz, Nadja C. & Steen, John, 2022. "A unified metric for costing tailings dams and the consequences for tailings management," Resources Policy, Elsevier, vol. 78(C).
    8. Endl, Andreas & Tost, Michael & Hitch, Michael & Moser, Peter & Feiel, Susanne, 2021. "Europe's mining innovation trends and their contribution to the sustainable development goals: Blind spots and strong points," Resources Policy, Elsevier, vol. 74(C).
    9. Devenin, Verónica, 2021. "Collaborative community development in mining regions: The Calama Plus and Creo Antofagasta programs in Chile," Resources Policy, Elsevier, vol. 70(C).
    10. Muibat Omotola Fashola & Veronica Mpode Ngole-Jeme & Olubukola Oluranti Babalola, 2016. "Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance," IJERPH, MDPI, vol. 13(11), pages 1-20, October.
    11. Juliana Segura-Salazar & Luís Marcelo Tavares, 2018. "Sustainability in the Minerals Industry: Seeking a Consensus on Its Meaning," Sustainability, MDPI, vol. 10(5), pages 1-38, May.
    12. Gustavo Lagos & David Peters & Marcos Lima & José Joaquín Jara, 2020. "Potential copper production through 2035 in Chile," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 43-56, July.
    13. Araya, Natalia & Ramírez, Yendery & Cisternas, Luis A. & Kraslawski, Andrzej, 2021. "Use of real options to enhance water-energy nexus in mine tailings management," Applied Energy, Elsevier, vol. 303(C).
    14. World Bank, 2014. "Enhancing Environmental and Social Sustainability of Mining in Armenia," World Bank Publications - Reports 18957, The World Bank Group.
    15. Elisabeth Christen & Klaus S. Friesenbichler & Alexander Hudetz & Claudia Kettner-Marx & Ina Meyer & Franz Sinabell, 2021. "Außenhandel und nachhaltige Entwicklung in Österreich. Befunde auf der Grundlage von vorliegenden Quellen," WIFO Studies, WIFO, number 69290, April.
    16. Shahba, Sudabe & Arjmandi, Reza & Monavari, Masoud & Ghodusi, Jamal, 2017. "Application of multi-attribute decision-making methods in SWOT analysis of mine waste management (case study: Sirjan's Golgohar iron mine, Iran)," Resources Policy, Elsevier, vol. 51(C), pages 67-76.
    17. Schoenberger, Erica, 2016. "Environmentally sustainable mining: The case of tailings storage facilities," Resources Policy, Elsevier, vol. 49(C), pages 119-128.
    18. Bach, Vanessa & Finogenova, Natalia & Berger, Markus & Winter, Lisa & Finkbeiner, Matthias, 2017. "Enhancing the assessment of critical resource use at the country level with the SCARCE method – Case study of Germany," Resources Policy, Elsevier, vol. 53(C), pages 283-299.
    19. Vesna Popović & Jelena Živanović Miljković & Jonel Subić & Andrei Jean-Vasile & Nedelcu Adrian & Eugen Nicolăescu, 2015. "Sustainable Land Management in Mining Areas in Serbia and Romania," Sustainability, MDPI, vol. 7(9), pages 1-21, August.
    20. Justyna Kujawska & Małgorzata Pawłowska, 2020. "Effect of drill cuttings addition on physicochemical and chemical properties of soil and red clover (Trifolium pretense L.) growth," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10901-:d:903435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.