IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4429-d1085135.html
   My bibliography  Save this article

Opportunities and Potential for Energy Utilization from Agricultural and Livestock Residues in the Region of Thessaly

Author

Listed:
  • Christos Argyropoulos

    (Department of Agriculture, University of Patras, 26504 Patras, Greece)

  • Theodoros Petrakis

    (Department of Agriculture, University of Patras, 26504 Patras, Greece)

  • Lito-Aspasia Roditi

    (Department of Agriculture, University of Patras, 26504 Patras, Greece)

  • Angeliki Kavga

    (Department of Agriculture, University of Patras, 26504 Patras, Greece)

Abstract

In recent years, due to the circular economy, the use of green energy forms, such as biofuels and biogas from anaerobic digestion of fermentable materials (e.g., agricultural and livestock residues) has entered our lives. According to the International Energy Agency it is estimated that the needs in 2040 will be 48% higher than in 2012 so all political decisions have converged on an urgent need for the use of more and more renewable and green energy. Considering the overall economic activity of these sectors in the region of Thessaly, the aim of this study is to highlight the residues from agricultural and livestock activities in the primary sector and calculate the annual biomass production, the methane and biogas potential, the electrical and thermal energy that can be produced from these wastes, as well as the solid residue that can be used to improve the soil of the region. The study was based on data referring to the years 2015 to 2020. The production of livestock and agricultural residues, averaged over the above six-year period in the study area, was estimated at approximately 4.8 × 10 6 t·yr. −1 , with livestock residues accounting for 83% and agricultural residues for 17%. Furthermore, the total residues can produce an average biogas potential of approximately 4.7 × 10 6 m 3 ·yr. −1 , while the amount of electricity that can be produced ranges from 708–1091 GWh·yr. −1 , and the corresponding thermal energy from 1112–1577 GWh·yr. −1 . As a result of the complete anaerobic digestion process, a solid residue could also be obtained for the improvement of the region’s soil, which translates into a quantity in the range of 4.01 × 10 4 to 5.10 × 10 4 t·yr. −1 .

Suggested Citation

  • Christos Argyropoulos & Theodoros Petrakis & Lito-Aspasia Roditi & Angeliki Kavga, 2023. "Opportunities and Potential for Energy Utilization from Agricultural and Livestock Residues in the Region of Thessaly," Sustainability, MDPI, vol. 15(5), pages 1-14, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4429-:d:1085135
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4429/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4429/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Orestis Kairis & Andreas Karamanos & Dimitrios Voloudakis & John Kapsomenakis & Chrysoula Aratzioglou & Christos Zerefos & Constantinos Kosmas, 2022. "Identifying Degraded and Sensitive to Desertification Agricultural Soils in Thessaly, Greece, under Simulated Future Climate Scenarios," Land, MDPI, vol. 11(3), pages 1-21, March.
    2. Siegrist, Armin & Bowman, Gillianne & Burg, Vanessa, 2022. "Energy generation potentials from agricultural residues: The influence of techno-spatial restrictions on biomethane, electricity, and heat production," Applied Energy, Elsevier, vol. 327(C).
    3. Moustakas, K. & Parmaxidou, P. & Vakalis, S., 2020. "Anaerobic digestion for energy production from agricultural biomass waste in Greece: Capacity assessment for the region of Thessaly," Energy, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    2. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    3. Alicja Słomka & Małgorzata Pawłowska, 2024. "Catch and Cover Crops’ Use in the Energy Sector via Conversion into Biogas—Potential Benefits and Disadvantages," Energies, MDPI, vol. 17(3), pages 1-25, January.
    4. Lauma Balode & Kristiāna Dolge & Dagnija Blumberga, 2023. "Sector-Specific Pathways to Sustainability: Unravelling the Most Promising Renewable Energy Options," Sustainability, MDPI, vol. 15(16), pages 1-24, August.
    5. Aravani, Vasiliki P. & Sun, Hangyu & Yang, Ziyi & Liu, Guangqing & Wang, Wen & Anagnostopoulos, George & Syriopoulos, George & Charisiou, Nikolaos D. & Goula, Maria A. & Kornaros, Michael & Papadakis,, 2022. "Agricultural and livestock sector's residues in Greece & China: Comparative qualitative and quantitative characterization for assessing their potential for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    7. Abbas, Shahbaz & Chiang Hsieh, Lin-Han & Techato, Kuaanan, 2021. "Supply chain integrated decision model in order to synergize the energy system of textile industry from its resource waste," Energy, Elsevier, vol. 229(C).
    8. Yazhou Zhao & Shengyu Li & Dazhi Yang & Jiaqiang Lei & Jinglong Fan, 2023. "Spatiotemporal Changes and Driving Force Analysis of Land Sensitivity to Desertification in Xinjiang Based on GEE," Land, MDPI, vol. 12(4), pages 1-20, April.
    9. Georgios Tsimelas & Dimitris Kofinas, 2023. "A Resource Nexus Analysis Methodology for Quantifying Synergies and Trade-Offs in the Agricultural Sector and Revealing Implications of a Legume Production Paradigm Shift," Sustainability, MDPI, vol. 15(12), pages 1-29, June.
    10. Jorge Andres Garcia & Angelos Alamanos, 2022. "Integrated Modelling Approaches for Sustainable Agri-Economic Growth and Environmental Improvement: Examples from Greece, Canada and Ireland," Land, MDPI, vol. 11(9), pages 1-19, September.
    11. Yan Xu & Zhaoyang Cai & Kaige Wang & Yuwei Zhang & Fengrong Zhang, 2022. "Evaluation for Appropriate Tillage of Sandy Land in Arid Sandy Area Based on Limitation Factor Exclusion Method," Land, MDPI, vol. 11(6), pages 1-12, May.
    12. Gillianne Bowman & Thierry Huber & Vanessa Burg, 2023. "Linking Solar and Biomass Resources to Generate Renewable Energy: Can We Find Local Complementarities in the Agricultural Setting?," Energies, MDPI, vol. 16(3), pages 1-17, February.
    13. Tumen Ozdil, N.F. & Caliskan, M., 2022. "Energy potential from biomass from agricultural crops: Development prospects of the Turkish bioeconomy," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4429-:d:1085135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.