IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i3p600-d1327184.html
   My bibliography  Save this article

Catch and Cover Crops’ Use in the Energy Sector via Conversion into Biogas—Potential Benefits and Disadvantages

Author

Listed:
  • Alicja Słomka

    (Independent Researcher, 20-824 Lublin, Poland)

  • Małgorzata Pawłowska

    (Faculty of Environmental Engineering, Lublin University of Technology, 20-618 Lublin, Poland)

Abstract

The development of civilization is related to an increase in energy demand, while its production is still based mainly on fossil fuels. The release of carbon into the environment, which disturbs the balance of the global system, is the consequence of using these fuels. One possible way to reduce the carbon footprint of the energy sector is the widespread use of cover crops’ biomass for energy production. The aim of this paper is to critically review the knowledge on the dissemination of catch and cover crops’ cultivation in different regions of the world, and the yield, chemical composition and biomethane potential of their biomass. Additionally, the environmental benefits, as well as the challenges and opportunities associated with this biomass use in the energy sector, are considered. The review showed that the aboveground biomass of cover and catch crops is a valuable source for the production of bioenergy in biogas plants. However, the key role of these crops is to prevent soil degradation. Therefore, changes in biomass target use must be preceded by a multi-aspect analysis that allows their impact on the environment to be assessed.

Suggested Citation

  • Alicja Słomka & Małgorzata Pawłowska, 2024. "Catch and Cover Crops’ Use in the Energy Sector via Conversion into Biogas—Potential Benefits and Disadvantages," Energies, MDPI, vol. 17(3), pages 1-25, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:600-:d:1327184
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/3/600/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/3/600/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yebo & Park, Stephen Y. & Zhu, Jiying, 2011. "Solid-state anaerobic digestion for methane production from organic waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 821-826, January.
    2. Prabhat Poudel & Jørgen Ødegaard & Siri Josefine Mo & Rebekka Kaald Andresen & Hans Andre Tandberg & Thomas Cottis & Harald Solberg & Kari Bysveen & Puspa Raj Dulal & Hesam Mousavi & Svein Øivind Solb, 2022. "Italian Ryegrass, Perennial Ryegrass, and Meadow Fescue as Undersown Cover Crops in Spring Wheat and Barley: Results from a Mixed Methods Study in Norway," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    3. Siegrist, Armin & Bowman, Gillianne & Burg, Vanessa, 2022. "Energy generation potentials from agricultural residues: The influence of techno-spatial restrictions on biomethane, electricity, and heat production," Applied Energy, Elsevier, vol. 327(C).
    4. Di Maria, Francesco & Sisani, Federico & Contini, Stefano, 2018. "Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste?," Applied Energy, Elsevier, vol. 230(C), pages 1557-1572.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Maria, Francesco & Sisani, Federico & Norouzi, Omid & Mersky, Ronald L., 2019. "The effectiveness of anaerobic digestion of bio-waste in replacing primary energies: An EU28 case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 347-354.
    2. Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
    3. Rouches, E. & Herpoël-Gimbert, I. & Steyer, J.P. & Carrere, H., 2016. "Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 179-198.
    4. Nicole Meinusch & Susanne Kramer & Oliver Körner & Jürgen Wiese & Ingolf Seick & Anita Beblek & Regine Berges & Bernhard Illenberger & Marco Illenberger & Jennifer Uebbing & Maximilian Wolf & Gunter S, 2021. "Integrated Cycles for Urban Biomass as a Strategy to Promote a CO 2 -Neutral Society—A Feasibility Study," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    5. Sylwia Myszograj, 2019. "Biogas and Methane Potential of Pre-Thermally Disintegrated Bio-Waste," Energies, MDPI, vol. 12(20), pages 1-12, October.
    6. Siswo Sumardiono & Gebyar Adisukmo & Muthia Hanif & Budiyono Budiyono & Heri Cahyono, 2021. "Effects of Pretreatment and Ratio of Solid Sago Waste to Rumen on Biogas Production through Solid-State Anaerobic Digestion," Sustainability, MDPI, vol. 13(13), pages 1-11, July.
    7. Claudinei De Souza Guimarães & David Rodrigues da Silva Maia & Eduardo Gonçalves Serra, 2018. "Construction of Biodigesters to Optimize the Production of Biogas from Anaerobic Co-Digestion of Food Waste and Sewage," Energies, MDPI, vol. 11(4), pages 1-10, April.
    8. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    9. Chadwick, Dara T. & McDonnell, Kevin P. & Brennan, Liam P. & Fagan, Colette C. & Everard, Colm D., 2014. "Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 672-681.
    10. Singh, Renu & Shukla, Ashish, 2014. "A review on methods of flue gas cleaning from combustion of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 854-864.
    11. Christos Argyropoulos & Theodoros Petrakis & Lito-Aspasia Roditi & Angeliki Kavga, 2023. "Opportunities and Potential for Energy Utilization from Agricultural and Livestock Residues in the Region of Thessaly," Sustainability, MDPI, vol. 15(5), pages 1-14, March.
    12. Aguilar-Moreno, Guadalupe Stefanny & Navarro-Cerón, Elizabeth & Velázquez-Hernández, Azucena & Hernández-Eugenio, Guadalupe & Aguilar-Méndez, Miguel Ángel & Espinosa-Solares, Teodoro, 2020. "Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles," Renewable Energy, Elsevier, vol. 147(P1), pages 204-213.
    13. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
    14. Hrabec, Dušan & Šomplák, Radovan & Nevrlý, Vlastimír & Viktorin, Adam & Pluháček, Michal & Popela, Pavel, 2020. "Sustainable waste-to-energy facility location: Influence of demand on energy sales," Energy, Elsevier, vol. 207(C).
    15. Irina N. Vikhareva & Guliya K. Aminova & Aliya K. Mazitova, 2022. "Resource Cycling: Application of Anaerobic Utilization Methods," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    16. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    17. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    18. Matheri, Anthony Njuguna & Sethunya, Vuiswa Lucia & Belaid, Mohamed & Muzenda, Edison, 2018. "Analysis of the biogas productivity from dry anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2328-2334.
    19. Li, Pengfei & Cheng, Chongbo & Guo, Rui & Yu, Ran & Jiao, Youzhou & Shen, Dekui & He, Chao, 2022. "Interactions among the components of artificial biomass during their anaerobic digestion with and without sewage sludge," Energy, Elsevier, vol. 261(PB).
    20. Alves, Ingrid R.F.S. & Mahler, Claudio F. & Oliveira, Luciano B. & Reis, Marcelo M. & Bassin, João P., 2022. "Investigating the effect of crude glycerol from biodiesel industry on the anaerobic co-digestion of sewage sludge and food waste in ternary mixtures," Energy, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:600-:d:1327184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.