IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3670-d1070987.html
   My bibliography  Save this article

The Influence of CO 2 Injection into Manure as a Pretreatment Method for Increased Biogas Production

Author

Listed:
  • Bronius Žalys

    (Lithuanian Energy Institute, Breslaujos g. 3, LT-44403 Kaunas, Lithuania)

  • Kęstutis Venslauskas

    (Faculty of Engineering, Vytautas Magnus University, K. Donelaičio g. 58, LT-44248 Kaunas, Lithuania)

  • Kęstutis Navickas

    (Faculty of Engineering, Vytautas Magnus University, K. Donelaičio g. 58, LT-44248 Kaunas, Lithuania)

  • Egidijus Buivydas

    (Lithuanian Energy Institute, Breslaujos g. 3, LT-44403 Kaunas, Lithuania)

  • Mantas Rubežius

    (Faculty of Engineering, Vytautas Magnus University, K. Donelaičio g. 58, LT-44248 Kaunas, Lithuania)

Abstract

Manure is considered a by-product or organic waste in cattle, pig, chicken or other animal breeding farms, which can be a valuable product as compost or feedstock for biogas production. The production of biomethane from biogas always copes with the formation of carbon dioxide (CO 2 ) as a by-product. This CO 2 may be recycled through the feedstock as a pretreatment to maximize homogeneity, and improve biogas yield and biogas quality. The CO 2 -pretreatment process of cow manure (CoM), chicken manure (ChM) and pig manure (PM) was performed in the continuously fed agitated reactor at 25 °C temperature and ambient barometric pressure. Biogas yield and composition exploration were performed in an anaerobic continuous feeding digester with controlled mesophilic (37 °C) environmental conditions. The CO 2 pretreated PM, CoM and ChM yielded 234.62 ± 10.93 L/kg VS , 82.01 ± 3.19 L/kg VS and 374.53 ± 9.27 L/kg VS biomethane from feedstock volatile solids, respectively. The biomethane yield from CO 2 pretreated CoM, ChM and PM achieved was higher over untreated manure by +33.78%, +28.76% and +21.78%, respectively. The anaerobic digestion process of tested feedstocks was stable, and the pH of the substrate was kept steady at a pH of CoM 7.77 ± 0.02, PM 8.07 ± 0.02 and ChM 8.09 ± 0.02 during all the experiment. The oxidation-reduction potential after pretreatment was within the optimal range (−255 ± 39.0 to −391 ± 16.8 mV) for anaerobic digestion. This process also had a positive effect on the energy generated from the feedstock, with ChM showing the greatest increase, from 2.38 MJ/kg to 3.06 MJ/kg.

Suggested Citation

  • Bronius Žalys & Kęstutis Venslauskas & Kęstutis Navickas & Egidijus Buivydas & Mantas Rubežius, 2023. "The Influence of CO 2 Injection into Manure as a Pretreatment Method for Increased Biogas Production," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3670-:d:1070987
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3670/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3670/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rafique, Rashad & Poulsen, Tjalfe Gorm & Nizami, Abdul-Sattar & Asam, Zaki-ul-Zaman & Murphy, Jerry D. & Kiely, Gerard, 2010. "Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production," Energy, Elsevier, vol. 35(12), pages 4556-4561.
    2. Zhen, Guangyin & Lu, Xueqin & Kobayashi, Takuro & Li, Yu-You & Xu, Kaiqin & Zhao, Youcai, 2015. "Mesophilic anaerobic co-digestion of waste activated sludge and Egeria densa: Performance assessment and kinetic analysis," Applied Energy, Elsevier, vol. 148(C), pages 78-86.
    3. Dar, R.A. & Parmar, M. & Dar, E.A. & Sani, R.K. & Phutela, U.G., 2021. "Biomethanation of agricultural residues: Potential, limitations and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Qiao, Wei & Yan, Xiuyi & Ye, Junhui & Sun, Yifei & Wang, Wei & Zhang, Zhongzhi, 2011. "Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment," Renewable Energy, Elsevier, vol. 36(12), pages 3313-3318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kęstutis Venslauskas & Kęstutis Navickas & Mantas Rubežius & Bronius Žalys & Audrius Gegeckas, 2024. "Processing of Agricultural Residues with a High Concentration of Structural Carbohydrates into Biogas Using Selective Biological Products," Sustainability, MDPI, vol. 16(4), pages 1-13, February.
    2. Izabela Konkol & Lesław Świerczek & Adam Cenian, 2023. "Chicken Manure Pretreatment for Enhancing Biogas and Methane Production," Energies, MDPI, vol. 16(14), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meneses-Quelal Orlando & Velázquez-Martí Borja, 2020. "Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review," Energies, MDPI, vol. 13(14), pages 1-28, July.
    2. Fernandes, Daniel J. & Ferreira, Ana F. & Fernandes, Edgar C., 2023. "Biogas and biomethane production potential via anaerobic digestion of manure: A case study of Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Li, C. & Champagne, P. & Anderson, B.C., 2015. "Enhanced biogas production from anaerobic co-digestion of municipal wastewater treatment sludge and fat, oil and grease (FOG) by a modified two-stage thermophilic digester system with selected thermo-," Renewable Energy, Elsevier, vol. 83(C), pages 474-482.
    4. Sarto, Sarto & Hildayati, Raudati & Syaichurrozi, Iqbal, 2019. "Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics," Renewable Energy, Elsevier, vol. 132(C), pages 335-350.
    5. Verónica Hidalgo-Sánchez & Uwe Behmel & Josef Hofmann & María Emma Borges, 2023. "Enhancing Biogas Production of Co-Digested Cattle Manure with Grass Silage from a Local Farm in Landshut, Bavaria, through Chemical and Mechanical Pre-Treatment and Its Impact on Biogas Reactor Hydrau," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    6. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.
    7. Al Afif, Rafat & Linke, Bernd, 2019. "Biogas production from three-phase olive mill solid waste in lab-scale continuously stirred tank reactor," Energy, Elsevier, vol. 171(C), pages 1046-1052.
    8. Grim, Johanna & Malmros, Peter & Schnürer, Anna & Nordberg, Åke, 2015. "Comparison of pasteurization and integrated thermophilic sanitation at a full-scale biogas plant – Heat demand and biogas production," Energy, Elsevier, vol. 79(C), pages 419-427.
    9. Bidart, Christian & Fröhling, Magnus & Schultmann, Frank, 2014. "Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge," Applied Energy, Elsevier, vol. 113(C), pages 404-413.
    10. Avaci, Angelica Buzinaro & Melegari de Souza, Samuel Nelson & Werncke, Ivan & Chaves, Luiz Inácio, 2013. "Financial economic scenario for the microgeneration of electric energy from swine culture-originated biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 272-276.
    11. T. Dlabaja & J. Malaťák, 2013. "Optimization of anaerobic fermentation of kitchen waste," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 59(1), pages 1-8.
    12. Yin, Yao & Liu, Ya-Juan & Meng, Shu-Juan & Kiran, Esra Uçkun & Liu, Yu, 2016. "Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion," Applied Energy, Elsevier, vol. 179(C), pages 1131-1137.
    13. Sambusiti, C. & Ficara, E. & Malpei, F. & Steyer, J.P. & Carrère, H., 2013. "Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum," Energy, Elsevier, vol. 55(C), pages 449-456.
    14. Zhang, Jingxin & Kan, Xiang & Shen, Ye & Loh, Kai-Chee & Wang, Chi-Hwa & Dai, Yanjun & Tong, Yen Wah, 2018. "A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment," Energy, Elsevier, vol. 152(C), pages 214-222.
    15. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    16. Bhatnagar, N. & Ryan, D. & Murphy, R. & Enright, A.M., 2022. "A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential – Global and Irish perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    17. Xiao, Benyi & Chen, Xia & Han, Yunping & Liu, Junxin & Guo, Xuesong, 2018. "Bioelectrochemical enhancement of the anaerobic digestion of thermal-alkaline pretreated sludge in microbial electrolysis cells," Renewable Energy, Elsevier, vol. 115(C), pages 1177-1183.
    18. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    19. Ajayi-Banji, A.A. & Sunoj, S. & Igathinathane, C. & Rahman, S., 2021. "Kinetic studies of alkaline-pretreated corn stover co-digested with upset dairy manure under solid-state," Renewable Energy, Elsevier, vol. 163(C), pages 2198-2207.
    20. Gérard Merlin & Jonathan Outin & Hervé Boileau, 2021. "Co-Digestion of Extended Aeration Sewage Sludge with Whey, Grease and Septage: Experimental and Modeling Determination," Sustainability, MDPI, vol. 13(16), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3670-:d:1070987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.