IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i24p16554-d1294327.html
   My bibliography  Save this article

Study on Direct Reduction in Carbon-Bearing Pellets Using Biochar

Author

Listed:
  • Jianlong Wu

    (Shougang Group Research Institute of Technology, Beijing 100043, China
    Shougang Jingtang Iron and Steel Co., Ltd., Tangshan 063200, China)

  • Shengli Wu

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Gang An

    (Shougang Jingtang Iron and Steel Co., Ltd., Tangshan 063200, China)

  • Chengwei Ma

    (Shougang Jingtang Iron and Steel Co., Ltd., Tangshan 063200, China)

  • Zhaojie Teng

    (Shougang Jingtang Iron and Steel Co., Ltd., Tangshan 063200, China)

  • Kun Xu

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Chuan Wang

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
    Swerim AB, SE-971 25 Luleå, Sweden
    Material Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden)

  • Xiaojun Ning

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Guangwei Wang

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

Abstract

As a renewable, carbon-neutral raw material, the application of biomass in steel production is conducive to reducing greenhouse gas emissions and achieving green and sustainable development in the steel industry. The heating and reduction process of a rotary hearth furnace was simulated under laboratory conditions to roast and reduce biochar carbon-bearing pellets with coke powder and anthracite carbon-bearing pellets as a comparison. This was conducted to investigate the impact of biochar as a reducing agent on the direct reduction in carbon-bearing pellets. Under various reduction temperatures, carbon/oxygen ratios, and reduction times, tests were conducted on the compressive strength and metallization rate of carbon-bearing pellets made using typical binder bentonite. Results show that with the increase in reduction temperature, the metallization rate of pellets increases, while the compressive strength initially decreases and then increases, reaching the lowest point at 900 °C and 1000 °C. When the ratio of carbon to oxygen is between 0.7 and 0.9 and the reduction time is between 15 and 25 min, carbon-bearing pellets meet the requirements of both the metallization rate and the strength, with the metallization rate above 80%. However, severe volume swelling and low strength were observed in biochar carbon-bearing pellets at 900 °C and 1000 °C, which negatively impacted multi-layered charging and heat transfer efficiency in the blast furnace. Therefore, a novel laboratory-prepared binder was introduced in the preparation process of biochar carbon-bearing pellets at an appropriate addition ratio of 5–8%. Without producing any swelling concerns, the inclusion of this binder considerably improved the compression strength and metallization rate of the pellets, enabling them to fulfill the standards for raw materials in the blast furnace.

Suggested Citation

  • Jianlong Wu & Shengli Wu & Gang An & Chengwei Ma & Zhaojie Teng & Kun Xu & Chuan Wang & Xiaojun Ning & Guangwei Wang, 2023. "Study on Direct Reduction in Carbon-Bearing Pellets Using Biochar," Sustainability, MDPI, vol. 15(24), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16554-:d:1294327
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/24/16554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/24/16554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Cheng, Wen-Yi & Lu, Ke-Miao & Huang, Ying-Pin, 2011. "An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction," Applied Energy, Elsevier, vol. 88(11), pages 3636-3644.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chai, Li & Saffron, Christopher M., 2016. "Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost," Applied Energy, Elsevier, vol. 163(C), pages 387-395.
    2. Qi, Jianhui & Zhao, Jianli & Xu, Yang & Wang, Yongjia & Han, Kuihua, 2018. "Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars," Energy, Elsevier, vol. 144(C), pages 301-311.
    3. Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
    4. Fan, Yuyang & Tippayawong, Nakorn & Wei, Guoqiang & Huang, Zhen & Zhao, Kun & Jiang, Liqun & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2020. "Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification," Applied Energy, Elsevier, vol. 260(C).
    5. Rousset, P. & Fernandes, K. & Vale, A. & Macedo, L. & Benoist, A., 2013. "Change in particle size distribution of Torrefied biomass during cold fluidization," Energy, Elsevier, vol. 51(C), pages 71-77.
    6. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    7. Kai Wang & Jianliang Zhang & Shengli Wu & Jianlong Wu & Kun Xu & Jiawen Liu & Xiaojun Ning & Guangwei Wang, 2022. "Feasibility Analysis of Biomass Hydrochar Blended Coal Injection for Blast Furnace," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    8. Ping Wang & Bret H. Howard, 2017. "Impact of Thermal Pretreatment Temperatures on Woody Biomass Chemical Composition, Physical Properties and Microstructure," Energies, MDPI, vol. 11(1), pages 1-20, December.
    9. Yu, Kai Ling & Chen, Wei-Hsin & Sheen, Herng-Kuang & Chang, Jo-Shu & Lin, Chih-Sheng & Ong, Hwai Chyuan & Show, Pau Loke & Ng, Eng-Poh & Ling, Tau Chuan, 2020. "Production of microalgal biochar and reducing sugar using wet torrefaction with microwave-assisted heating and acid hydrolysis pretreatment," Renewable Energy, Elsevier, vol. 156(C), pages 349-360.
    10. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    11. Nguyen, Nhut M. & Alobaid, Falah & May, Jan & Peters, Jens & Epple, Bernd, 2020. "Experimental study on steam gasification of torrefied woodchips in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 202(C).
    12. Yi-Kai Chih & Wei-Hsin Chen & Hwai Chyuan Ong & Pau Loke Show, 2019. "Product Characteristics of Torrefied Wood Sawdust in Normal and Vacuum Environments," Energies, MDPI, vol. 12(20), pages 1-17, October.
    13. Jau-Jang Lu & Wei-Hsin Chen, 2013. "Product Yields and Characteristics of Corncob Waste under Various Torrefaction Atmospheres," Energies, MDPI, vol. 7(1), pages 1-15, December.
    14. Bach, Quang-Vu & Skreiberg, Øyvind & Lee, Chul-Jin, 2017. "Process modeling and optimization for torrefaction of forest residues," Energy, Elsevier, vol. 138(C), pages 348-354.
    15. Sabil, Khalik M. & Aziz, Muafah A. & Lal, Bhajan & Uemura, Yoshimitsu, 2013. "Synthetic indicator on the severity of torrefaction of oil palm biomass residues through mass loss measurement," Applied Energy, Elsevier, vol. 111(C), pages 821-826.
    16. Chew, J.J. & Doshi, V., 2011. "Recent advances in biomass pretreatment – Torrefaction fundamentals and technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4212-4222.
    17. Kulkarni, Avanti & Baker, Ryan & Abdoulmomine, Nourredine & Adhikari, Sushil & Bhavnani, Sushil, 2016. "Experimental study of torrefied pine as a gasification fuel using a bubbling fluidized bed gasifier," Renewable Energy, Elsevier, vol. 93(C), pages 460-468.
    18. Wilk, Małgorzata & Magdziarz, Aneta & Kalemba, Izabela & Gara, Paweł, 2016. "Carbonisation of wood residue into charcoal during low temperature process," Renewable Energy, Elsevier, vol. 85(C), pages 507-513.
    19. Li, Hui & Liu, Xinhua & Legros, Robert & Bi, Xiaotao T. & Jim Lim, C. & Sokhansanj, Shahab, 2012. "Pelletization of torrefied sawdust and properties of torrefied pellets," Applied Energy, Elsevier, vol. 93(C), pages 680-685.
    20. Zhang, Congyu & Ho, Shih-Hsin & Chen, Wei-Hsin & Xie, Youping & Liu, Zhenquan & Chang, Jo-Shu, 2018. "Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index," Applied Energy, Elsevier, vol. 220(C), pages 598-604.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16554-:d:1294327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.