IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i23p16270-d1287039.html
   My bibliography  Save this article

Water Resources Evaluation and Sustainability Considering Climate Change and Future Anthropic Demands in the Arequipa Region of Southern Peru

Author

Listed:
  • Jonathan A. Quiroz

    (Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
    INTERA Inc., Austin, TX 78759, USA)

  • Pablo A. Garcia-Chevesich

    (Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
    Intergubernamental Hydrological Programme, United Nations Educational, Scientific, and Cultural Organization (UNESCO), Montevideo 11200, Uruguay)

  • Gisella Martínez

    (Facultad de Geología, Geofísica y Minas, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru)

  • Kattia Martínez

    (Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru)

  • Teresa Tejada-Purizaca

    (Facultad de Ingeniería de Procesos, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru)

  • Kyle E. Murray

    (Murray GeoConsulting, LLC, Denver, CO 80215, USA)

  • John E. McCray

    (Department of Civil and Environmental Engineering, Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO 80401, USA)

Abstract

Climate change and increases in human activities are threatening water availability in the Arequipa Region (southern Peru). However, to date, there has not been a comprehensive inventory of surface water data or an investigation of current surface water conditions or forecasted future conditions resulting from increased anthropic demand or stresses from climate change. This study evaluates surface water resources management including storage, diversions, and conveyance in the Arequipa Region, while creating a tool for the evaluation of future scenarios in the five main watersheds of this arid region of southern Peru. State-of-the art, open-source modeling software was used. Water uses for each watershed were evaluated against predicted reservoir inflows and streamflows for different periods. In addition to the above, 12 climate change models and different shared socioeconomic pathways (SSP) were ensembled for the five watersheds. A semi-distributed approach and an innovative simulation splitting approach was used for each watershed, which allowed for different starting dates for the simulations using all available data obtained from different sources (government and private). Results indicate that the region is expected to have increased flows during the wet season and no significant changes during the dry season. Reservoir inflows are expected to increase up to 42 and 216% for the lowest and highest SSP evaluated, respectively. Similarly, the model projected streamflow increases up to 295 and 704%, respectively. Regarding yearly water availability and considering current and future demands for the watersheds under study, water deficits are not expected in the future if current reservoir storage can be maintained, though it is expected that reservoirs won’t be able to store predicted higher flows, so important volumes of water could be lost during the wet season to the ocean by natural drainage. Given the uncertainty of climate change projections, if future water sustainability is desired, storage and irrigation efficiencies should be improved and reservoir sedimentation should be evaluated.

Suggested Citation

  • Jonathan A. Quiroz & Pablo A. Garcia-Chevesich & Gisella Martínez & Kattia Martínez & Teresa Tejada-Purizaca & Kyle E. Murray & John E. McCray, 2023. "Water Resources Evaluation and Sustainability Considering Climate Change and Future Anthropic Demands in the Arequipa Region of Southern Peru," Sustainability, MDPI, vol. 15(23), pages 1-31, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:23:p:16270-:d:1287039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/23/16270/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/23/16270/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael L. Wilson & Vakhtang Tchantchaleishvili, 2013. "The Importance of Free and Open Source Software and Open Standards in Modern Scientific Publishing," Publications, MDPI, vol. 1(2), pages 1-7, June.
    2. Knox, J.W. & Kay, M.G. & Weatherhead, E.K., 2012. "Water regulation, crop production, and agricultural water management—Understanding farmer perspectives on irrigation efficiency," Agricultural Water Management, Elsevier, vol. 108(C), pages 3-8.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    2. Daccache, A. & Knox, J.W. & Weatherhead, E.K. & Daneshkhah, A. & Hess, T.M., 2015. "Implementing precision irrigation in a humid climate – Recent experiences and on-going challenges," Agricultural Water Management, Elsevier, vol. 147(C), pages 135-143.
    3. Morillo, J. García & Martín, M. & Camacho, E. & Díaz, J.A. Rodríguez & Montesinos, P., 2015. "Toward precision irrigation for intensive strawberry cultivation," Agricultural Water Management, Elsevier, vol. 151(C), pages 43-51.
    4. Rodrigues, Gonçalo C. & Paredes, Paula & Gonçalves, José M. & Alves, Isabel & Pereira, Luis S., 2013. "Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns," Agricultural Water Management, Elsevier, vol. 126(C), pages 85-96.
    5. Ozturk, Munir & Saba, Naheed & Altay, Volkan & Iqbal, Rizwan & Hakeem, Khalid Rehman & Jawaid, Mohammad & Ibrahim, Faridah Hanum, 2017. "Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1285-1302.
    6. Cao, Xinchun & Zeng, Wen & Wu, Mengyang & Guo, Xiangping & Wang, Weiguang, 2020. "Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation," Agricultural Water Management, Elsevier, vol. 231(C).
    7. Gadanakis, Yiorgos & Bennett, Richard & Park, Julian & Areal, Francisco Jose, 2015. "Improving productivity and water use efficiency: A case study of farms in England," Agricultural Water Management, Elsevier, vol. 160(C), pages 22-32.
    8. Pratt, Tyler & Allen, L. Niel & Rosenberg, David E. & Keller, Andrew A. & Kopp, Kelly, 2019. "Urban agriculture and small farm water use: Case studies and trends from Cache Valley, Utah," Agricultural Water Management, Elsevier, vol. 213(C), pages 24-35.
    9. Li, Man & Xu, Wenchao & Rosegrant, Mark W., 2016. "Irrigation, Risk Aversion, and Water Rights under Water Supply Uncertainty," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235753, Agricultural and Applied Economics Association.
    10. Schattman, Rachel E. & Jean, Haley & Faulkner, Joshua W. & Maden, Rebecca & McKeag, Lisa & Nelson, Katie Campbell & Grubinger, Vernon & Burnett, Stephanie & Erich, M. Susan & Ohno, Tsutomu, 2023. "Effects of irrigation scheduling approaches on soil moisture and vegetable production in the Northeastern U.S.A," Agricultural Water Management, Elsevier, vol. 287(C).
    11. Morris, J. & Else, M.A. & El Chami, D. & Daccache, A. & Rey, D. & Knox, J.W., 2017. "Essential irrigation and the economics of strawberries in a temperate climate," Agricultural Water Management, Elsevier, vol. 194(C), pages 90-99.
    12. LI, Jie, 2021. "A simulation approach to optimizing the vegetation covers under the water constraint in the Yellow River Basin," Forest Policy and Economics, Elsevier, vol. 123(C).
    13. Jia, Z. & Wu, Z. & Luo, W. & Xi, W. & Tang, S. & Liu, W.L. & Fang, S., 2013. "The impact of improving irrigation efficiency on wetland distribution in an agricultural landscape in the upper reaches of the Yellow River in China," Agricultural Water Management, Elsevier, vol. 121(C), pages 54-61.
    14. Olutobi Adeyemi & Ivan Grove & Sven Peets & Tomas Norton, 2017. "Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation," Sustainability, MDPI, vol. 9(3), pages 1-29, February.
    15. Rio, M. & Rey, D. & Prudhomme, C. & Holman, I.P., 2018. "Evaluation of changing surface water abstraction reliability for supplemental irrigation under climate change," Agricultural Water Management, Elsevier, vol. 206(C), pages 200-208.
    16. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
    17. Alonso, A. & Feltz, N. & Gaspart, F. & Sbaa, M. & Vanclooster, M., 2019. "Comparative assessment of irrigation systems’ performance: Case study in the Triffa agricultural district, NE Morocco," Agricultural Water Management, Elsevier, vol. 212(C), pages 338-348.
    18. Terang, Bharat & Baruah, Debendra Chandra, 2023. "Techno-economic and environmental assessment of solar photovoltaic, diesel, and electric water pumps for irrigation in Assam, India," Energy Policy, Elsevier, vol. 183(C).
    19. Liu, Run Jin & Sheng, Ping Ping & Hui, Hai Bin & Lin, Qi & Chen, Ying Long, 2015. "Integrating irrigation management for improved grain yield of winter wheat and rhizosphere AM fungal diversity in a semi-arid cropping system," Agricultural Systems, Elsevier, vol. 132(C), pages 167-173.
    20. Zhang, Ling & Ma, Qimin & Zhao, Yanbo & Wu, Xiaobo & Yu, Wenjun, 2019. "Determining the influence of irrigation efficiency improvement on water use and consumption by conceptually considering hydrological pathways," Agricultural Water Management, Elsevier, vol. 213(C), pages 674-681.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:23:p:16270-:d:1287039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.