IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i21p15372-d1268957.html
   My bibliography  Save this article

Achieving a Sustainable Transportation System via Economic, Environmental, and Social Optimization: A Comprehensive AHP-DEA Approach from the Waste Transportation Sector

Author

Listed:
  • Hala Hmamed

    (LM2I Laboratory, ENSAM, Moulay Ismail University, Meknes 50500, Morocco)

  • Asmaa Benghabrit

    (LMAID Laboratory, ENSMR, Rabat 10000, Morocco)

  • Anass Cherrafi

    (LAPSSII Laboratory, EST-Safi, Cadi Ayyad University, Safi 46000, Morocco)

  • Nadia Hamani

    (LTI Laboratory, University of Picardie Jules Verne, 02100 Saint Quentin, France)

Abstract

Given the growing global emphasis on sustainable transportation systems, this research presents a comprehensive approach to achieving economic, social, and environmental efficiency in transport within the waste management sector. To address the different challenges of sustainable transportation issues, this paper presents a hybrid multi-criteria decision-making (MCDM) approach that incorporates the analytic hierarchy process (AHP) along with data envelopment analysis (DEA) for sustainable route selection. By leveraging the strengths of both methods, this approach reconciles conflicting requirements and diverse perspectives, facilitating effective decision making. This paper involves identifying relevant criteria for route evaluation, engaging waste management company experts and stakeholders in pairwise comparisons using AHP. Furthermore, DEA is used to calculate route efficiency based on the inputs and outputs of the system. These evaluations enable the identification of the most effective and sustainable routes. This proposed methodology empowers decision makers and transportation policymakers to develop an effective decision-making tool for addressing waste transportation challenges in developing countries. The study contributes to the growing body of research on sustainable waste management practices and provides insights for waste management companies and decision makers on how to optimize waste transportation routes while reducing economic, social, and environmental impacts.

Suggested Citation

  • Hala Hmamed & Asmaa Benghabrit & Anass Cherrafi & Nadia Hamani, 2023. "Achieving a Sustainable Transportation System via Economic, Environmental, and Social Optimization: A Comprehensive AHP-DEA Approach from the Waste Transportation Sector," Sustainability, MDPI, vol. 15(21), pages 1-26, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15372-:d:1268957
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/21/15372/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/21/15372/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salvatore Ammirato & Gerarda Fattoruso & Antonio Violi, 2022. "Parsimonious AHP-DEA Integrated Approach for Efficiency Evaluation of Production Processes," JRFM, MDPI, vol. 15(7), pages 1-15, June.
    2. Minjiao Cheng & Wenchao Wei, 2020. "An AHP-DEA Approach of the Bike-Sharing Spots Selection Problem in the Free-Floating Bike-Sharing System," Discrete Dynamics in Nature and Society, Hindawi, vol. 2020, pages 1-15, September.
    3. Deveci, Muhammet & Demirel, Nihan Çetin & Ahmetoğlu, Emine, 2017. "Airline new route selection based on interval type-2 fuzzy MCDM: A case study of new route between Turkey- North American region destinations," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 83-99.
    4. Anass Cherrafi & Said Elfezazi & Kannan Govindan & Jose Arturo Garza-Reyes & Khalid Benhida & Ahmed Mokhlis, 2017. "A framework for the integration of Green and Lean Six Sigma for superior sustainability performance," International Journal of Production Research, Taylor & Francis Journals, vol. 55(15), pages 4481-4515, August.
    5. Cifuentes-Faura, Javier & Faura-Martínez, Ursula, 2023. "Measuring Spanish airport performance: A bootstrap data envelopment analysis of efficiency," Utilities Policy, Elsevier, vol. 80(C).
    6. Gupta, Pankaj & Mehlawat, Mukesh Kumar & Aggarwal, Usha & Charles, V., 2021. "An integrated AHP-DEA multi-objective optimization model for sustainable transportation in mining industry," Resources Policy, Elsevier, vol. 74(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmut BAKIR & Şahap AKAN & Kasım KIRACI & Darjan KARABASEVIC & Dragisa STANUJKIC & Gabrijela POPOVIC, 2020. "Multiple-Criteria Approach of the Operational Performance Evaluation in the Airline Industry: Evidence from the Emerging Markets," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 149-172, July.
    2. Mohsin Malik & Salam Abdallah, 2019. "Sustainability Initiatives in Emerging Economies: A Socio-Cultural Perspective," Sustainability, MDPI, vol. 11(18), pages 1-19, September.
    3. Alaa Alden Al Mohamed & Sobhi Al Mohamed, 2023. "Application of fuzzy group decision-making selecting green supplier: a case study of the manufacture of natural laurel soap," Future Business Journal, Springer, vol. 9(1), pages 1-20, December.
    4. Aleksandar Aleksić & Danijela Tadić, 2023. "Industrial and Management Applications of Type-2 Multi-Attribute Decision-Making Techniques Extended with Type-2 Fuzzy Sets from 2013 to 2022," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
    5. Mariana Sedliačiková & Nikolay Neykov & Ján Dobrovič & Anna Šatanová & Mária Osvaldová & Mykola Palinchak, 2024. "Performance measuring of wood-processing microenterprises through Data Envelopment Analysis: A case study of Slovakia, Poland, and Bulgaria," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 11(3), pages 408-422, March.
    6. Sasha Shahbazi & Martin Kurdve & Mats Zackrisson & Christina Jönsson & Anna Runa Kristinsdottir, 2019. "Comparison of Four Environmental Assessment Tools in Swedish Manufacturing: A Case Study," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    7. Chang, Yu-Chun & Lee, Wei-Hao & Wu, Chi-Hung, 2019. "Airline new route selection using compromise programming - The case of Taiwan-Europe," Journal of Air Transport Management, Elsevier, vol. 76(C), pages 10-20.
    8. Zhiqiang Zhu & Xuechi Zhang & Mengqing Xue & Yaoyao Song, 2023. "Eco-Efficiency and Its Evolutionary Change under Regulatory Constraints: A Case Study of Chinese Transportation Industry," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    9. Gerarda Fattoruso & Salvatore Scognamiglio & Antonio Violi, 2022. "A New Dynamic and Perspective Parsimonious AHP Model for Improving Industrial Frameworks," Mathematics, MDPI, vol. 10(17), pages 1-13, September.
    10. Hamed Gholami & Norhazrina Jamil & Muhamad Zameri Mat Saman & Dalia Streimikiene & Safian Sharif & Norhayati Zakuan, 2021. "The application of Green Lean Six Sigma," Business Strategy and the Environment, Wiley Blackwell, vol. 30(4), pages 1913-1931, May.
    11. Cherrafi, Anass & Garza-Reyes, Jose Arturo & Kumar, Vikas & Mishra, Nishikant & Ghobadian, Abby & Elfezazi, Said, 2018. "Lean, green practices and process innovation: A model for green supply chain performance," International Journal of Production Economics, Elsevier, vol. 206(C), pages 79-92.
    12. Amna Farrukh & Sanjay Mathrani & Aymen Sajjad, 2022. "A natural resource and institutional theory‐based view of green‐lean‐six sigma drivers for environmental management," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1074-1090, March.
    13. Noureddine Dahmani & Amine Belhadi & Khalid Benhida & Said Elfezazi & Fatima Ezahra Touriki & Yassine Azougagh, 2022. "Integrating lean design and eco-design to improve product design: From literature review to an operational framework," Energy & Environment, , vol. 33(1), pages 189-219, February.
    14. Ottone Scammacca & Rasool Mehdizadeh & Yann Gunzburger, 2022. "Territorial Mining Scenarios for Sustainable Land-Planning: A Risk-Based Comparison on the Example of Gold Mining in French Guiana," Sustainability, MDPI, vol. 14(17), pages 1-25, August.
    15. Ali Bastas & Kapila Liyanage, 2018. "ISO 9001 and Supply Chain Integration Principles Based Sustainable Development: A Delphi Study," Sustainability, MDPI, vol. 10(12), pages 1-35, December.
    16. Fuzhen Liu & Kee-hung Lai & Wei Cai, 2021. "Responsible Production for Sustainability: Concept Analysis and Bibliometric Review," Sustainability, MDPI, vol. 13(3), pages 1-27, January.
    17. Bing Deng & Taoyu Chen & Zhenyu Pu & Xia Peng & Xiner Qin & Xiaomei Zhan & Jianghui Wen, 2022. "A Transportation Network Optimization Model for Livestock Manure under Different Terrains Considering Economic and Environmental Benefits," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    18. Cagatay Tasdemir & Rado Gazo, 2018. "A Systematic Literature Review for Better Understanding of Lean Driven Sustainability," Sustainability, MDPI, vol. 10(7), pages 1-54, July.
    19. Maryam Pervez Khan & Noraini Abu Talib & Tan Owee Kowang, 2018. "Development of Sustainability Framework Based On the Theory of Resource Based View," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 8(7), pages 636-647, July.
    20. Wen, Xuanhao & Cao, Huajun & Hon, Bernard & Chen, Erheng & Li, Hongcheng, 2021. "Energy value mapping: A novel lean method to integrate energy efficiency into production management," Energy, Elsevier, vol. 217(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15372-:d:1268957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.