IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p12710-d1222684.html
   My bibliography  Save this article

A Study of Initial Water Rights Allocation Coupled with Physical and Virtual Water Resources

Author

Listed:
  • Xia Xu

    (Architectural Engineering School, Tongling University, Tongling 244000, China)

  • Jing Yuan

    (Architectural Engineering School, Tongling University, Tongling 244000, China)

  • Qianwen Yu

    (Business School, Suzhou University of Science and Technology, Suzhou 215009, China)

  • Zehao Sun

    (Business School, Suzhou University of Science and Technology, Suzhou 215009, China)

Abstract

Virtual water exerts an indispensable influence on water resources, yet the existing studies on the water rights allocation of transboundary rivers hardly consider virtual water transfer (VWT). Therefore, in this paper, we used Taihu Lake as an example with data collected in 2017 that described both physical and virtual water use. We used these data to evaluate water rights allocation schemes by coupling virtual and physical water use. In order to achieve this goal, we first determined the physical water rights allocated for the four regions connected to the Basin. Next, we employed the multi-regional input–output (MRIO) approach to calculate the VWT among the four regions; then, we converted the VWT to the riparian level via the water efficiency coefficient. Finally, with virtual water included in the physical water rights allocation, we formulated a final water rights allocation for Taihu Lake. The results showed the following findings: (1) The ranking of the amount of physical water rights allocation is: Jiangsu > Zhejiang > Shanghai > Anhui. (2) Anhui and Jiangsu produce a net export of virtual water (2.259 billion m 3 and 1.78 billion m 3 , respectively), while Zhejiang and Shanghai have a net import of virtual water (2.344 billion m 3 and 1.695 billion m 3 , respectively), indicating that Anhui houses more water-consuming industries and is in greater need of economic restructuring. (3) The integration of virtual water makes a difference: Jiangsu achieved 16.208 billion m 3 in terms of the amount of water rights allocated, Zhejiang achieved 6.606 billion m 3 , Shanghai achieved 3.040 billion m 3 , and Anhui achieved 4.319 billion m 3 , with a ranking of Jiangsu > Zhejiang > Anhui > Shanghai. The results detailed above prove that virtual water exerts an indispensable influence, and integrating virtual water can make the physical water rights allocation of transboundary rivers more equal and reasonable.

Suggested Citation

  • Xia Xu & Jing Yuan & Qianwen Yu & Zehao Sun, 2023. "A Study of Initial Water Rights Allocation Coupled with Physical and Virtual Water Resources," Sustainability, MDPI, vol. 15(17), pages 1-28, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12710-:d:1222684
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/12710/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/12710/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Lizhong & Fang, Liping & Hipel, Keith W., 2008. "Basin-wide cooperative water resources allocation," European Journal of Operational Research, Elsevier, vol. 190(3), pages 798-817, November.
    2. M. Antonelli & R. Roson & M. Sartori, 2012. "Systemic Input-Output Computation of Green and Blue Virtual Water ‘Flows’ with an Illustration for the Mediterranean Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4133-4146, November.
    3. X. T. Zeng & Y. P. Li & G. H. Huang & J. Liu, 2017. "Modeling of Water Resources Allocation and Water Quality Management for Supporting Regional Sustainability under Uncertainty in an Arid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3699-3721, September.
    4. Xia Xu & Fengping Wu & Qianwen Yu & Xiangnan Chen & Yue Zhao, 2022. "Invisible Effect of Virtual Water Transfer on Water Quantity Conflict in Transboundary Rivers—Taking Ili River as a Case," IJERPH, MDPI, vol. 19(15), pages 1-25, July.
    5. Hanfei Wu & Ruochen Jin & Ao Liu & Shiyun Jiang & Li Chai, 2022. "Savings and Losses of Scarce Virtual Water in the International Trade of Wheat, Maize, and Rice," IJERPH, MDPI, vol. 19(7), pages 1-12, March.
    6. Vesco, Paola & Dasgupta, Shouro & De Cian, Enrica & Carraro, Carlo, 2020. "Natural resources and conflict: A meta-analysis of the empirical literature," Ecological Economics, Elsevier, vol. 172(C).
    7. Santosh Kumar Yadav & Dennis Joseph & Nasina Jigeesh, 2018. "A review on industrial applications of TOPSIS approach," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 30(1), pages 23-28.
    8. Sun, J.X. & Yin, Y.L. & Sun, S.K. & Wang, Y.B. & Yu, X. & Yan, K., 2021. "Review on research status of virtual water: The perspective of accounting methods, impact assessment and limitations," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Erik Dietzenbacher & Esther Velazquez, 2007. "Analysing Andalusian Virtual Water Trade in an Input-Output Framework," Regional Studies, Taylor & Francis Journals, vol. 41(2), pages 185-196.
    10. Daniel Connell, 2011. "Water Reform and the Federal System in the Murray-Darling Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(15), pages 3993-4003, December.
    11. Xia Xu & Fengping Wu & Qianwen Yu & Xiangnan Chen & Yue Zhao, 2022. "Analysis on Management Policies on Water Quantity Conflict in Transboundary Rivers Embedded with Virtual Water—Using Ili River as the Case," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    12. Wanshun Zhang & Yan Wang & Hong Peng & Yiting Li & Jushan Tang & K. Wu, 2010. "A Coupled Water Quantity–Quality Model for Water Allocation Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 485-511, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia Xu & Fengping Wu & Qianwen Yu & Xiangnan Chen & Yue Zhao, 2022. "Invisible Effect of Virtual Water Transfer on Water Quantity Conflict in Transboundary Rivers—Taking Ili River as a Case," IJERPH, MDPI, vol. 19(15), pages 1-25, July.
    2. Xia Xu & Fengping Wu & Qianwen Yu & Xiangnan Chen & Yue Zhao, 2022. "Analysis on Management Policies on Water Quantity Conflict in Transboundary Rivers Embedded with Virtual Water—Using Ili River as the Case," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    3. Mohammad Nikoo & Akbar Karimi & Reza Kerachian & Hamed Poorsepahy-Samian & Farhang Daneshmand, 2013. "Rules for Optimal Operation of Reservoir-River-Groundwater Systems Considering Water Quality Targets: Application of M5P Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2771-2784, June.
    4. Hmaed Najafi Alamdarlo & Fariba Riyahi & Mohamad Hasan Vakilpoor, 2019. "Wheat Self-Sufficiency, Water Restriction and Virtual Water Trade in Iran," Networks and Spatial Economics, Springer, vol. 19(2), pages 503-520, June.
    5. Chen, Xiang-nan & Li, Fang & Wu, Feng-ping & Xu, Xia & Zhao, Yue, 2023. "Initial water rights allocation of Industry in the Yellow River basin driven by high-quality development," Ecological Modelling, Elsevier, vol. 477(C).
    6. Zhanqi Wang & Jun Yang & Xiangzheng Deng & Xi Lan, 2015. "Optimal Water Resources Allocation under the Constraint of Land Use in the Heihe River Basin of China," Sustainability, MDPI, vol. 7(2), pages 1-18, February.
    7. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    8. Hu, Zhineng & Chen, Yazhen & Yao, Liming & Wei, Changting & Li, Chaozhi, 2016. "Optimal allocation of regional water resources: From a perspective of equity–efficiency tradeoff," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 102-113.
    9. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    10. Alexandros Gkatsikos & Konstadinos Mattas, 2021. "The Paradox of the Virtual Water Trade Balance in the Mediterranean Region," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    11. Cattaneo, Cristina & Foreman, Timothy, 2023. "Climate change, international migration, and interstate conflicts," Ecological Economics, Elsevier, vol. 211(C).
    12. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    13. Mingjing Guo & Ziyu Jiang & Yan Bu & Jinhua Cheng, 2019. "Supporting Sustainable Development of Water Resources: A Social Welfare Maximization Game Model," IJERPH, MDPI, vol. 16(16), pages 1-15, August.
    14. Wang, S. & Huang, G.H., 2014. "An integrated approach for water resources decision making under interactive and compound uncertainties," Omega, Elsevier, vol. 44(C), pages 32-40.
    15. Court, Christa D. & Munday, Max & Roberts, Annette & Turner, Karen, 2015. "Can hazardous waste supply chain ‘hotspots’ be identified using an input–output framework?," European Journal of Operational Research, Elsevier, vol. 241(1), pages 177-187.
    16. Roberto Roson & Martina Sartori, 2015. "A Decomposition and Comparison Analysis of International Water Footprint Time Series," Sustainability, MDPI, vol. 7(5), pages 1-17, April.
    17. Abid, Ilyes & Dhaoui, Abderrazak & Kaabia, Olfa & Tarchella, Salma, 2023. "Geopolitical risk on energy, agriculture, livestock, precious and industrial metals: New insights from a Markov Switching model," Resources Policy, Elsevier, vol. 85(PA).
    18. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    19. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    20. Zhongwen Xu & Liming Yao & Yin Long, 2020. "Climatic Impact Toward Regional Water Allocation and Transfer Strategies from Economic, Social and Environmental Perspectives," Land, MDPI, vol. 9(11), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12710-:d:1222684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.