IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p11981-d1210246.html
   My bibliography  Save this article

Transient Stability Analysis for Grid-Forming VSCs Based on Nonlinear Decoupling Method

Author

Listed:
  • Yue Li

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Yanghong Xia

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Yini Ni

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Yonggang Peng

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Qifan Feng

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

With the increasing integration of renewable energy into the power grid, there is a growing demand for converters that not only provide stable power, but also support auxiliary functions such as grid-voltage regulation. Consequently, grid-forming strategies have attracted significant attention. However, due to the complexities of analyzing nonlinear coupling systems, a comprehensive transient stability analysis of grid-forming converters is still being explored. Conventional analysis methods rely on a simplified quasi-steady-state model for grid-forming voltage source converters (VSCs) and focus on analyzing the transient instability phenomenon caused by the outer power loop. However, this oversimplified model may yield incorrect conclusions. To address this limitation, this paper develops a full-order model that includes quadratic nonlinear terms to accurately represent the system’s nonlinear characteristics. The developed model is then decoupled into multiple low-order modes using a nonlinear decoupling method. These low-order modes can be analyzed using the mature inversing trajectory method, indirectly reflecting the transient stability of grid-forming VSCs under large disturbances. Through varying the inner and outer parameters, the transient stability of grid-forming VSCs is analyzed in detail. Furthermore, the analysis results are verified through hardware-in-loop (HIL) experiments.

Suggested Citation

  • Yue Li & Yanghong Xia & Yini Ni & Yonggang Peng & Qifan Feng, 2023. "Transient Stability Analysis for Grid-Forming VSCs Based on Nonlinear Decoupling Method," Sustainability, MDPI, vol. 15(15), pages 1-21, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11981-:d:1210246
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/11981/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/11981/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    2. A. G. Olabi & Khaled Obaideen & Mohammad Ali Abdelkareem & Maryam Nooman AlMallahi & Nabila Shehata & Abdul Hai Alami & Ayman Mdallal & Asma Ali Murah Hassan & Enas Taha Sayed, 2023. "Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristian Antonio Pedraza-Yepes & Kevin Enrique Berdugo-Rolong & Daniel Eduardo Ruiz-Muñoz & Oscar Fabián Higuera-Cobos & José Daniel Hernández-Vásquez, 2023. "Feasibility Study for the Implementation of Photovoltaic Panels in Public Transportation in Barranquilla," Energies, MDPI, vol. 16(20), pages 1-28, October.
    2. Emilia Miszewska & Maciej Niedostatkiewicz & Radosław Wiśniewski, 2023. "Sustainable Development of Water Housing Using the Example of Poland: An Analysis of Scenarios," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    3. Murshed, Muntasir, 2023. "Efficacies of technological progress and renewable energy transition in amplifying national electrification rates: contextual evidence from developing countries," Utilities Policy, Elsevier, vol. 81(C).
    4. Nikolas G. Chatzigeorgiou & Spyros Theocharides & George Makrides & George E. Georghiou, 2023. "Evaluating the Techno-Economic Effect of Pricing and Consumption Parameters on the Power-to-Energy Ratio for Sizing Photovoltaic-Battery Systems: An Assessment of Prosumers in the Mediterranean Area," Energies, MDPI, vol. 16(10), pages 1-27, May.
    5. George E. Halkos & Apostolos S. Tsirivis, 2023. "Sustainable Development of the European Electricity Sector: Investigating the Impact of Electricity Price, Market Liberalization and Energy Taxation on RES Deployment," Energies, MDPI, vol. 16(14), pages 1-21, July.
    6. Hossam Hassan Ali & Mohamed Ebeed & Ahmed Fathy & Francisco Jurado & Thanikanti Sudhakar Babu & Alaa A. Mahmoud, 2023. "A New Hybrid Multi-Population GTO-BWO Approach for Parameter Estimation of Photovoltaic Cells and Modules," Sustainability, MDPI, vol. 15(14), pages 1-33, July.
    7. Syed Ali Fazal & Naeem Hayat & Abdullah Al Mamun, 2023. "Renewable Energy and Sustainable Development—Investigating Intention and Consumption among Low-Income Households in an Emerging Economy," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
    8. Basiony Shehata Atia & Mohamed Metwally Mahmoud & I. M. Elzein & Abdel-Moamen Mohamed Abdel-Rahim & Abdulaziz Alkuhayli & Usama Khaled & Abderrahmane Beroual & Salma Abdelaal Shaaban, 2024. "Applications of Kepler Algorithm-Based Controller for DC Chopper: Towards Stabilizing Wind Driven PMSGs under Nonstandard Voltages," Sustainability, MDPI, vol. 16(7), pages 1-25, April.
    9. Carlos Cacciuttolo & Deyvis Cano & Ximena Guardia & Eunice Villicaña, 2024. "Renewable Energy from Wind Farm Power Plants in Peru: Recent Advances, Challenges, and Future Perspectives," Sustainability, MDPI, vol. 16(4), pages 1-28, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11981-:d:1210246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.