IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p10944-d1192604.html
   My bibliography  Save this article

Pilot-Scale Anaerobic Co-Digestion of Food Waste and Polylactic Acid

Author

Listed:
  • Angeliki Maragkaki

    (Department of Agriculture, School of Agricultural Science, Hellenic Mediterranean University, 71401 Crete, Greece)

  • Christos Tsompanidis

    (ENVIROPLAN S.A., 23 Perikleous & Iras Str., Gerakas, 15344 Athens, Greece)

  • Kelly Velonia

    (Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Greece)

  • Thrassyvoulos Manios

    (Department of Agriculture, School of Agricultural Science, Hellenic Mediterranean University, 71401 Crete, Greece)

Abstract

Bioplastics are frequently utilized in daily life, particularly for food packaging and carrier bags. They can be delivered to biogas plants through a separate collection of the organic fraction of municipal waste (OFMSW). The increased demand for and use of bioplastics aimed at mitigating plastic pollution raises significant questions concerning their life cycle and compatibility with waste management units. Anaerobic digestion (AD) in OFMSW is a valuable resource for biogas production. In this work, the valorization of poly-L-lactic acid (PLLA) composed of food waste within the Biowaste to Bioplastic (B2B) Project framework was studied in laboratory and pilot-scale anaerobic liquid conditions. Taking into account that the addition of PLLA to biowaste can increase biogas production, we performed laboratory-scale anaerobic tests on food waste enriched with different molecular-weight PLLAs produced from food waste or commercial PLLA at a mesophilic temperature of 37 °C. PLLA with the highest molecular weight was subjected to AD on the pilot scale to further validate our findings. The addition of PLLA increased biogas production and had no apparent negative impact on the operation of the reactors used in the laboratory or on the pilot scale. Biogas production was higher when using PLLA with the lowest molecular weight. In the pilot-scale experiments, co-digestion of FW with PLLA increased biogas production by 1.1 times. When PLLA was added to the feed, biomethane was 8% higher, while volatile solids (VS) and total chemical oxygen demand (TCOD) removal were almost the same. Importantly, no effect was observed in the operation of the digesters.

Suggested Citation

  • Angeliki Maragkaki & Christos Tsompanidis & Kelly Velonia & Thrassyvoulos Manios, 2023. "Pilot-Scale Anaerobic Co-Digestion of Food Waste and Polylactic Acid," Sustainability, MDPI, vol. 15(14), pages 1-11, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10944-:d:1192604
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/10944/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/10944/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Nachod & Emily Keller & Amro Hassanein & Stephanie Lansing, 2021. "Assessment of Petroleum-Based Plastic and Bioplastics Degradation Using Anaerobic Digestion," Sustainability, MDPI, vol. 13(23), pages 1-14, December.
    2. Ankita Shrestha & Mieke C. A. A. van-Eerten Jansen & Bishnu Acharya, 2020. "Biodegradation of Bioplastic Using Anaerobic Digestion at Retention Time as per Industrial Biogas Plant and International Norms," Sustainability, MDPI, vol. 12(10), pages 1-9, May.
    3. Abdullah Nsair & Senem Onen Cinar & Ayah Alassali & Hani Abu Qdais & Kerstin Kuchta, 2020. "Operational Parameters of Biogas Plants: A Review and Evaluation Study," Energies, MDPI, vol. 13(15), pages 1-27, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz, 2021. "The Effect of Static Magnetic Field on Methanogenesis in the Anaerobic Digestion of Municipal Sewage Sludge," Energies, MDPI, vol. 14(3), pages 1-16, January.
    2. Yermek Abilmazhinov & Kapan Shakerkhan & Vladimir Meshechkin & Yerzhan Shayakhmetov & Nurzhan Nurgaliyev & Anuarbek Suychinov, 2023. "Mathematical Modeling for Evaluating the Sustainability of Biogas Generation through Anaerobic Digestion of Livestock Waste," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    3. Katarzyna Ignatowicz & Gabriel Filipczak & Barbara Dybek & Grzegorz Wałowski, 2023. "Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples," Energies, MDPI, vol. 16(2), pages 1-17, January.
    4. Gabriele Di Giacomo, 2021. "Material and Energy Recovery from the Final Disposal of Organic Waste," Energies, MDPI, vol. 14(24), pages 1-2, December.
    5. Senem Onen Cinar & Abdullah Nsair & Nils Wieczorek & Kerstin Kuchta, 2022. "Long-Term Assessment of Temperature Management in an Industrial Scale Biogas Plant," Sustainability, MDPI, vol. 14(2), pages 1-17, January.
    6. Christopher Tunji Oloyede & Simeon Olatayo Jekayinfa & Abass Olanrewaju Alade & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & Ademola Oyejide Adebayo & Adeola Ibrahim Abdulkareem & Ghassan Fadhil Sm, 2023. "Synthesis of Biobased Composite Heterogeneous Catalyst for Biodiesel Production Using Simplex Lattice Design Mixture: Optimization Process by Taguchi Method," Energies, MDPI, vol. 16(5), pages 1-26, February.
    7. Benjamin Nachod & Emily Keller & Amro Hassanein & Stephanie Lansing, 2021. "Assessment of Petroleum-Based Plastic and Bioplastics Degradation Using Anaerobic Digestion," Sustainability, MDPI, vol. 13(23), pages 1-14, December.
    8. Halayit Abrha & Jonnathan Cabrera & Yexin Dai & Muhammad Irfan & Abrham Toma & Shipu Jiao & Xianhua Liu, 2022. "Bio-Based Plastics Production, Impact and End of Life: A Literature Review and Content Analysis," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    9. Joanna Mikusińska & Monika Kuźnia & Klaudia Czerwińska & Małgorzata Wilk, 2023. "Hydrothermal Carbonization of Digestate Produced in the Biogas Production Process," Energies, MDPI, vol. 16(14), pages 1-18, July.
    10. Grażyna Kędzia & Barbara Ocicka & Aneta Pluta-Zaremba & Marta Raźniewska & Jolanta Turek & Beata Wieteska-Rosiak, 2022. "Social Innovations for Improving Compostable Packaging Waste Management in CE: A Multi-Solution Perspective," Energies, MDPI, vol. 15(23), pages 1-19, December.
    11. Alvyra Slepetiene & Mykola Kochiieru & Aida Skersiene & Audrone Mankeviciene & Olgirda Belova, 2022. "Changes in Stabile Organic Carbon in Differently Managed Fluvisol Treated by Two Types of Anaerobic Digestate," Energies, MDPI, vol. 15(16), pages 1-11, August.
    12. Ó Céileachair, Dónal & O'Shea, Richard & Murphy, Jerry D. & Wall, David M., 2021. "Alternative energy management strategies for large industry in non-gas-grid regions using on-farm biomethane," Applied Energy, Elsevier, vol. 303(C).
    13. Raj, Tirath & Chandrasekhar, K. & Naresh Kumar, A. & Kim, Sang-Hyoun, 2022. "Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Amit Kumar Sharma & Pradeepta Kumar Sahoo & Mainak Mukherjee & Alok Patel, 2022. "Assessment of Sustainable Biogas Production from Co-Digestion of Jatropha De-Oiled Cake and Cattle Dung Using Floating Drum Type Digester under Psychrophilic and Mesophilic Conditions," Clean Technol., MDPI, vol. 4(2), pages 1-13, June.
    15. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Dariusz Twaróg & Jarosław Gołębiewski & Sebastian Wójcik, 2021. "The Role of Agriculture and Rural Areas in the Development of Autonomous Energy Regions in Poland," Energies, MDPI, vol. 14(13), pages 1-21, July.
    16. Ionica Oncioiu & Sorinel Căpuşneanu & Dan Ioan Topor & Marius Petrescu & Anca-Gabriela Petrescu & Monica Ioana Toader, 2020. "The Effective Management of Organic Waste Policy in Albania," Energies, MDPI, vol. 13(16), pages 1-16, August.
    17. Matevž Zupančič & Valerija Možic & Matic Može & Franc Cimerman & Iztok Golobič, 2022. "Current Status and Review of Waste-to-Biogas Conversion for Selected European Countries and Worldwide," Sustainability, MDPI, vol. 14(3), pages 1-25, February.
    18. Gregor Drago Zupančič & Anamarija Lončar & Sandra Budžaki & Mario Panjičko, 2022. "Biopolymers Produced by Treating Waste Brewer’s Yeast with Active Sludge Bacteria: The Qualitative Analysis and Evaluation of the Potential for 3D Printing," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    19. Francesco Facchini & Giovanni Mummolo & Micaela Vitti, 2021. "Scenario Analysis for Selecting Sewage Sludge-to-Energy/Matter Recovery Processes," Energies, MDPI, vol. 14(2), pages 1-21, January.
    20. Katarzyna Ignatowicz & Jacek Piekarski & Paweł Kogut, 2021. "Influence of Selected Substrate Dosage on the Process of Biogas Installation Start-Up in Real Conditions," Energies, MDPI, vol. 14(18), pages 1-11, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10944-:d:1192604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.