IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9632-d1172098.html
   My bibliography  Save this article

Assessing the Energy-Saving Potential and Visual Comfort of Electrochromic Smart Windows in Office Buildings: A Case Study in Dhahran, Saudi Arabia

Author

Listed:
  • Ismail M. Budaiwi

    (Architectural Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Mohammed Abdul Fasi

    (Innovation and Technology Transfer Office, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

Abstract

This study comprehensively evaluates the energy-saving potential and visual comfort aspects of electrochromic (EC) smart windows in a hot-humid climate office building. Using an advanced building simulation tool, EC windows are compared to conventional low-E glazed windows, considering two control triggers: daylighting level and glare control. The primary objective is to determine energy savings achievable with EC windows while addressing visual comfort. Detailed analysis of the building’s energy performance and indoor environment is conducted. Results show significant energy savings of 23% with EC windows using daylighting control but limited visual comfort in some zones. Conversely, EC windows with glare control achieve 17% energy savings while maintaining visual comfort throughout the building. These findings highlight the potential of EC windows with glare control in saving energy and maintaining visual comfort in hot-humid office buildings. Further research is needed to optimize performance for different building types and climates. In conclusion, this study provides insights into energy-saving capabilities and visual comfort considerations with EC smart windows, emphasizing the importance of appropriate control triggers for maximizing energy savings and occupant comfort. Future investigations should explore EC window performance across diverse building typologies and climates to enhance the benefits of this innovative technology.

Suggested Citation

  • Ismail M. Budaiwi & Mohammed Abdul Fasi, 2023. "Assessing the Energy-Saving Potential and Visual Comfort of Electrochromic Smart Windows in Office Buildings: A Case Study in Dhahran, Saudi Arabia," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9632-:d:1172098
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9632/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9632/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Myunghwan Oh & Minsu Jang & Jaesik Moon & Seungjun Roh, 2019. "Evaluation of Building Energy and Daylight Performance of Electrochromic Glazing for Optimal Control in Three Different Climate Zones," Sustainability, MDPI, vol. 11(1), pages 1-23, January.
    2. Aritra Ghosh & Abdelhakim Mesloub & Mabrouk Touahmia & Meriem Ajmi, 2021. "Visual Comfort Analysis of Semi-Transparent Perovskite Based Building Integrated Photovoltaic Window for Hot Desert Climate (Riyadh, Saudi Arabia)," Energies, MDPI, vol. 14(4), pages 1-13, February.
    3. Casini, Marco, 2018. "Active dynamic windows for buildings: A review," Renewable Energy, Elsevier, vol. 119(C), pages 923-934.
    4. Mesloub, Abdelhakim & Ghosh, Aritra & Touahmia, Mabrouk & Albaqawy, Ghazy Abdullah & Alsolami, Badr M. & Ahriz, Atef, 2022. "Assessment of the overall energy performance of an SPD smart window in a hot desert climate," Energy, Elsevier, vol. 252(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdul Mujeebu, Muhammad & Ashraf, Noman, 2024. "Energy-saving benefits of thermal insulation and glazing in code-compliant office building in cooling-dominated climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Jianming Yang & Yonglang Huang & Jie Han & Hongxing Mai & Peng Li, 2025. "Optical–Thermal Performance and Energy Efficiency of Electrochromic Glazing in Hot Summer and Warm Winter Residential Buildings," Sustainability, MDPI, vol. 17(4), pages 1-24, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atef Ahriz & Abdelhakim Mesloub & Leila Djeffal & Badr M. Alsolami & Aritra Ghosh & Mohamed Hssan Hassan Abdelhafez, 2022. "The Use of Double-Skin Façades to Improve the Energy Consumption of High-Rise Office Buildings in a Mediterranean Climate (Csa)," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    2. Bai, Yijie & He, Yurong, 2022. "Enhanced solar modulation ability of smart windows based on hydroxypropyl cellulose mixed with nonionic surfactants," Renewable Energy, Elsevier, vol. 198(C), pages 749-759.
    3. Han, Shulun & Sun, Yuying & Wang, Wei & Xu, Wenjing & Wei, Wenzhe, 2023. "Optimal design method for electrochromic window split-pane configuration to enhance building energy efficiency," Renewable Energy, Elsevier, vol. 219(P1).
    4. Michaux, Ghislain & Greffet, Rémy & Salagnac, Patrick & Ridoret, Jean-Baptiste, 2019. "Modelling of an airflow window and numerical investigation of its thermal performances by comparison to conventional double and triple-glazed windows," Applied Energy, Elsevier, vol. 242(C), pages 27-45.
    5. Shaik, Saboor & Maduru, Venkata Ramana & Kirankumar, Gorantla & Arıcı, Müslüm & Ghosh, Aritra & Kontoleon, Karolos J. & Afzal, Asif, 2022. "Space-age energy saving, carbon emission mitigation and color rendering perspective of architectural antique stained glass windows," Energy, Elsevier, vol. 259(C).
    6. Michalis Michael & Fabio Favoino & Qian Jin & Alessandra Luna-Navarro & Mauro Overend, 2023. "A Systematic Review and Classification of Glazing Technologies for Building Façades," Energies, MDPI, vol. 16(14), pages 1-47, July.
    7. Krarti, Moncef, 2023. "Optimal optical properties for smart glazed windows applied to residential buildings," Energy, Elsevier, vol. 278(PB).
    8. Roberta Moschetti & Shabnam Homaei & Ellika Taveres-Cachat & Steinar Grynning, 2022. "Assessing Responsive Building Envelope Designs through Robustness-Based Multi-Criteria Decision Making in Zero-Emission Buildings," Energies, MDPI, vol. 15(4), pages 1-27, February.
    9. Field, Edward & Ghosh, Aritra, 2023. "Energy assessment of advanced and switchable windows for less energy-hungry buildings in the UK," Energy, Elsevier, vol. 283(C).
    10. Zhang, Heyu & Wu, Yongjia & Shi, Tianhao & Wang, Qinggang & Wang, Caixia & Chen, Qiong & Ming, Tingzhen, 2025. "Thermal rectifiers: Physical mechanisms and potential applications in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    11. Mikhail Vasiliev & Mohammad Nur-E-Alam & Kamal Alameh, 2019. "Recent Developments in Solar Energy-Harvesting Technologies for Building Integration and Distributed Energy Generation," Energies, MDPI, vol. 12(6), pages 1-23, March.
    12. Marchini, F. & Chiatti, C. & Fabiani, C. & Pisello, A.L., 2023. "Development of an innovative translucent–photoluminescent coating for smart windows applications: An experimental and numerical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    13. Aritra Ghosh, 2022. "Recent Advances in Renewable Energy and Clean Energy," Energies, MDPI, vol. 15(9), pages 1-2, April.
    14. Huang, Junchao & Yu, Jinghua & Yang, Hongxing, 2018. "Effects of key factors on the heat insulation performance of a hollow block ventilated wall," Applied Energy, Elsevier, vol. 232(C), pages 409-423.
    15. Mohammad Dabbagh & Moncef Krarti, 2021. "Optimal Control Strategies for Switchable Transparent Insulation Systems Applied to Smart Windows for US Residential Buildings," Energies, MDPI, vol. 14(10), pages 1-24, May.
    16. Silvia Ruggiero & Marco Iannantuono & Anastasia Fotopoulou & Dimitra Papadaki & Margarita Niki Assimakopoulos & Rosa Francesca De Masi & Giuseppe Peter Vanoli & Annarita Ferrante, 2022. "Multi-Objective Optimization for Cooling and Interior Natural Lighting in Buildings for Sustainable Renovation," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    17. Jerzy Szyszka, 2022. "From Direct Solar Gain to Trombe Wall: An Overview on Past, Present and Future Developments," Energies, MDPI, vol. 15(23), pages 1-25, November.
    18. Chang, Ling-Yu & Chang, Ching-Cheng & Rinawati, Mia & Chang, Yu-Hsin & Cheng, Yao-Sheng & Ho, Kuo-Chuan & Chen, Chia-Chin & Lin, Chia-Her & Wang, Chia-Hsin & Yeh, Min-Hsin, 2024. "Near-infrared photoelectrochromic device with graphene quantum dot modified WO3 thin film toward fast-response thermal management for self-powered Agrivoltaics," Applied Energy, Elsevier, vol. 361(C).
    19. Shen, Yi & Xue, Peng & Luo, Tao & Zhang, Yanyun & Tso, Chi Yan & Zhang, Nan & Sun, Yuying & Xie, Jingchao & Liu, Jiaping, 2022. "Regional applicability of thermochromic windows based on dynamic radiation spectrum," Renewable Energy, Elsevier, vol. 196(C), pages 15-27.
    20. Zhou, Yuekuan & Zheng, Siqian, 2020. "Stochastic uncertainty-based optimisation on an aerogel glazing building in China using supervised learning surrogate model and a heuristic optimisation algorithm," Renewable Energy, Elsevier, vol. 155(C), pages 810-826.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9632-:d:1172098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.