IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8631-d1156079.html
   My bibliography  Save this article

Predictive Churn Modeling for Sustainable Business in the Telecommunication Industry: Optimized Weighted Ensemble Machine Learning

Author

Listed:
  • Wee How Khoh

    (Faculty of Information Science and Technology, Multimedia University, Melaka 75450, Malaysia)

  • Ying Han Pang

    (Faculty of Information Science and Technology, Multimedia University, Melaka 75450, Malaysia)

  • Shih Yin Ooi

    (Faculty of Information Science and Technology, Multimedia University, Melaka 75450, Malaysia)

  • Lillian-Yee-Kiaw Wang

    (School of Information Technology, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia)

  • Quan Wei Poh

    (Winnefy Enterprise, Jalan SD 2/6, Taman Sri Duyong 2, Melaka 75460, Malaysia)

Abstract

Customers are prominent resources in every business for its sustainability. Therefore, predicting customer churn is significant for reducing churn, particularly in the high-churn-rate telecommunications business. To identify customers at risk of churning, tactical marketing actions can be strategized to raise the likelihood of the churn-probable customers remaining as customers. This might provide a corporation with significant savings. Hence, in this work, a churn prediction system is developed to assist telecommunication operators in detecting potential churn customers. In the proposed framework, the input data quality is improved through the processes of exploratory data analysis and data preprocessing for identifying data errors and comprehending data patterns. Then, feature engineering and data sampling processes are performed to transform the captured data into an appropriate form for classification and imbalanced data handling. An optimized ensemble learning model is proposed for classification in this framework. Unlike other ensemble models, the proposed classification model is an optimized weighted soft voting ensemble with a sequence of weights applied to weigh the prediction of each base learner with the hypothesis that specific base learners in the ensemble have more skill than others. In this optimization, Powell’s optimization algorithm is applied to optimize the ensemble weights of influence according to the base learners’ importance. The efficiency of the proposed optimally weighted ensemble learning model is evaluated in a real-world database. The empirical results show that the proposed customer churn prediction system achieves a promising performance with an accuracy score of 84% and an F1 score of 83.42%. Existing customer churn prediction systems are studied. We achieved a higher prediction accuracy than the other systems, including machine learning and deep learning models.

Suggested Citation

  • Wee How Khoh & Ying Han Pang & Shih Yin Ooi & Lillian-Yee-Kiaw Wang & Quan Wei Poh, 2023. "Predictive Churn Modeling for Sustainable Business in the Telecommunication Industry: Optimized Weighted Ensemble Machine Learning," Sustainability, MDPI, vol. 15(11), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8631-:d:1156079
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8631/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8631/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Altyeb Taha, 2021. "Intelligent Ensemble Learning Approach for Phishing Website Detection Based on Weighted Soft Voting," Mathematics, MDPI, vol. 9(21), pages 1-13, November.
    2. Sen Zhang & Yongquan Zhou, 2015. "Grey Wolf Optimizer Based on Powell Local Optimization Method for Clustering Analysis," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-17, November.
    3. Coussement, Kristof & De Bock, Koen W., 2013. "Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning," Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    2. Koen W. de Bock & Arno de Caigny, 2021. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling," Post-Print hal-03391564, HAL.
    3. Louis Geiler & Séverine Affeldt & Mohamed Nadif, 2022. "A survey on machine learning methods for churn prediction," Post-Print hal-03824873, HAL.
    4. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    5. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    6. Chen, Xun-Qi & Ma, Chao-Qun & Ren, Yi-Shuai & Lei, Yu-Tian & Huynh, Ngoc Quang Anh & Narayan, Seema, 2023. "Explainable artificial intelligence in finance: A bibliometric review," Finance Research Letters, Elsevier, vol. 56(C).
    7. Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
    8. Mitrović, Sandra & Baesens, Bart & Lemahieu, Wilfried & De Weerdt, Jochen, 2018. "On the operational efficiency of different feature types for telco Churn prediction," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1141-1155.
    9. Chen, Yan & Zhang, Lei & Zhao, Yulu & Xu, Bing, 2022. "Implementation of penalized survival models in churn prediction of vehicle insurance," Journal of Business Research, Elsevier, vol. 153(C), pages 162-171.
    10. Steven Debaere & Floris Devriendt & Johanna Brunneder & Wouter Verbeke & Tom de Ruyck & Kristof Coussement, 2019. "Reducing inferior member community participation using uplift modeling: Evidence from a field experiment," Post-Print hal-02990787, HAL.
    11. Petra P. Šimović & Claire Y. T. Chen & Edward W. Sun, 2023. "Classifying the Variety of Customers’ Online Engagement for Churn Prediction with a Mixed-Penalty Logistic Regression," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 451-485, January.
    12. Gattermann-Itschert, Theresa & Thonemann, Ulrich W., 2021. "How training on multiple time slices improves performance in churn prediction," European Journal of Operational Research, Elsevier, vol. 295(2), pages 664-674.
    13. Petra Posedel v{S}imovi'c & Davor Horvatic & Edward W. Sun, 2021. "Classifying variety of customer's online engagement for churn prediction with mixed-penalty logistic regression," Papers 2105.07671, arXiv.org, revised Jul 2021.
    14. Tripathi Manas & Kumar Saurabh & Inani Sarveshwar Kumar, 2021. "Exchange Rate Forecasting Using Ensemble Modeling for Better Policy Implications," Journal of Time Series Econometrics, De Gruyter, vol. 13(1), pages 43-71, January.
    15. Eva Ascarza & Oded Netzer & Bruce G. S. Hardie, 2018. "Some Customers Would Rather Leave Without Saying Goodbye," Marketing Science, INFORMS, vol. 37(1), pages 54-77, January.
    16. Pantano, Eleonora & Priporas, Constantinos-Vasilios & Stylos, Nikolaos, 2017. "‘You will like it!’ using open data to predict tourists' response to a tourist attraction," Tourism Management, Elsevier, vol. 60(C), pages 430-438.
    17. Wei Liu & Zongshui Wang & Hong Zhao, 2020. "Comparative study of customer relationship management research from East Asia, North America and Europe: A bibliometric overview," Electronic Markets, Springer;IIM University of St. Gallen, vol. 30(4), pages 735-757, December.
    18. Salil Madhav Dubey & Hari Mohan Dubey & Surender Reddy Salkuti, 2022. "Modified Quasi-Opposition-Based Grey Wolf Optimization for Mathematical and Electrical Benchmark Problems," Energies, MDPI, vol. 15(15), pages 1-29, August.
    19. Rehman, Obaid Ur & Zhou, Zihan & Wu, Kai & Li, Wen, 2024. "From courtrooms to corporations: The effect of bankruptcy court establishment on firm acquisitions," Finance Research Letters, Elsevier, vol. 61(C).
    20. Chandrasekhar Valluri & Sudhakar Raju & Vivek H. Patil, 2022. "Customer determinants of used auto loan churn: comparing predictive performance using machine learning techniques," Journal of Marketing Analytics, Palgrave Macmillan, vol. 10(3), pages 279-296, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8631-:d:1156079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.