IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p8168-d1149390.html
   My bibliography  Save this article

Connected Vehicles and Digital Infrastructures: A Framework for Assessing the Port Efficiency

Author

Listed:
  • Orlando Marco Belcore

    (Department of Engineering, University of Messina, 98166 Messina, Italy)

  • Massimo Di Gangi

    (Department of Engineering, University of Messina, 98166 Messina, Italy)

  • Antonio Polimeni

    (Department of Engineering, University of Messina, 98166 Messina, Italy)

Abstract

In logistics and freight distribution, scheduling and cost efficiency are two crucial issues for transportation companies that look with favour at the innovation introduced by Intelligent Transportation Systems (ITS). Moreover, an infrastructure level of service, safety and environmental defence are important for planners and public administrations. In this sense, terminal capacity and landside operations at the maritime infrastructure represent an interesting task for the community. Thus, this paper contributes to the research by: (i) proposing a generic framework for the integration of autonomous and connected vehicles with physical infrastructures; (ii) evaluating the opportunity to manage traffic arrivals according to vehicles’ priority and testing the effects of the introduction of a buffer zone outside the maritime port; (iii) improving efficiency and security within the terminal area by reducing waiting time and avoiding interference between flows. Moreover, the proposal for a discrete-event simulation model to assess terminal capacity in a ro-ro terminal is presented. Therefore, the paper contributes to some critical aspects towards sustainable development. First, regarding policy measures and actions, it proposes a valuable tool to assess what-if scenarios. Secondly, it represents a step forward in the process of smart corridor design for freight vehicles; in fact, it proposes a tool for managing landside operations at maritime ports and focuses on intervention in solving specific barriers and bottlenecks for freight who cross a ro-ro terminal daily. Furthermore, it offers a viable solution for managing connected vehicles in a context where full automation still needs to be achieved. The results evidenced the framework’s capability to deal with the traffic demand, thus improving the efficiency of the terminal landside operations.

Suggested Citation

  • Orlando Marco Belcore & Massimo Di Gangi & Antonio Polimeni, 2023. "Connected Vehicles and Digital Infrastructures: A Framework for Assessing the Port Efficiency," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8168-:d:1149390
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/8168/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/8168/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhongzhen Yang & Kang Chen & Theo Notteboom, 2012. "Optimal design of container liner services: Interactions with the transport demand in ports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 14(4), pages 409-434, December.
    2. Yavuz Keceli, 2016. "A simulation model for gate operations in multi-purpose cargo terminals," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(8), pages 945-958, November.
    3. Francesco Parola & Anna Sciomachen, 2009. "Modal split evaluation of a maritime container terminal," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(1), pages 77-97, March.
    4. Changqian Guan & Rongfang (Rachel) Liu, 2009. "Container terminal gate appointment system optimization," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(4), pages 378-398, December.
    5. Antonio Comi & Antonio Polimeni, 2020. "Assessing the Potential of Short Sea Shipping and the Benefits in Terms of External Costs: Application to the Mediterranean Basin," Sustainability, MDPI, vol. 12(13), pages 1-17, July.
    6. Sharif, Omor & Huynh, Nathan & Vidal, Jose M., 2011. "Application of El Farol model for managing marine terminal gate congestion," Research in Transportation Economics, Elsevier, vol. 32(1), pages 81-89.
    7. Florin RUSCĂ & Mihaela POPA & Eugen ROȘCA & Mircea ROȘCA & Aura RUSCĂ, 2018. "Simulation Model For Maritime Container Terminal," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 13(4), pages 47-54, December.
    8. Eunbin Kim & Youngrim Kim & Jieun Park, 2022. "The Necessity of Introducing Autonomous Trucks in Logistics 4.0," Sustainability, MDPI, vol. 14(7), pages 1-10, March.
    9. Raka Jovanovic, 2018. "Optimizing Truck Visits to Container Terminals with Consideration of Multiple Drays of Individual Drivers," Journal of Optimization, Hindawi, vol. 2018, pages 1-8, September.
    10. J Fernando Alvarez & Tore Longva & Erna S Engebrethsen, 2010. "A methodology to assess vessel berthing and speed optimization policies," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 12(4), pages 327-346, December.
    11. Chen, Gang & Govindan, Kannan & Yang, Zhongzhen, 2013. "Managing truck arrivals with time windows to alleviate gate congestion at container terminals," International Journal of Production Economics, Elsevier, vol. 141(1), pages 179-188.
    12. Geoffrey C. Preston & Phillip Horne & Maria Paola Scaparra & Jesse R. O’Hanley, 2020. "Masterplanning at the Port of Dover: The Use of Discrete-Event Simulation in Managing Road Traffic," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    2. Li, Dongjun & Dong, Jing-Xin & Song, Dong-Ping & Hicks, Christian & Singh, Surya Prakash, 2020. "Optimal contract design for the exchange of tradable truck permits at multiterminal ports," International Journal of Production Economics, Elsevier, vol. 230(C).
    3. Phan, Mai-Ha & Kim, Kap Hwan, 2015. "Negotiating truck arrival times among trucking companies and a container terminal," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 132-144.
    4. Lange, Ann-Kathrin & Nellen, Nicole & Jahn, Carlos, 2022. "Truck appointment systems: How can they be improved and what are their limits?," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 615-655, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    5. Mengzhi Ma & Houming Fan & Xiaodan Jiang & Zhenfeng Guo, 2019. "Truck Arrivals Scheduling with Vessel Dependent Time Windows to Reduce Carbon Emissions," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
    6. Mohammad Torkjazi & Nathan Huynh & Ali Asadabadi, 2022. "Modeling the Truck Appointment System as a Multi-Player Game," Logistics, MDPI, vol. 6(3), pages 1-25, July.
    7. Ngoc Anh Dung Do & Izabela Ewa Nielsen & Gang Chen & Peter Nielsen, 2016. "A simulation-based genetic algorithm approach for reducing emissions from import container pick-up operation at container terminal," Annals of Operations Research, Springer, vol. 242(2), pages 285-301, July.
    8. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. Chen, Rui & Meng, Qiang & Jia, Peng, 2022. "Container port drayage operations and management: Past and future," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    10. Mar-Ortiz, Julio & Castillo-García, Norberto & Gracia, María D., 2020. "A decision support system for a capacity management problem at a container terminal," International Journal of Production Economics, Elsevier, vol. 222(C).
    11. Dhingra, Vibhuti & Kumawat, Govind Lal & Roy, Debjit & Koster, René de, 2018. "Solving semi-open queuing networks with time-varying arrivals: An application in container terminal landside operations," European Journal of Operational Research, Elsevier, vol. 267(3), pages 855-876.
    12. Wenrui Qu & Tao Tao & Bo Xie & Yi Qi, 2021. "A State-Dependent Approximation Method for Estimating Truck Queue Length at Marine Terminals," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    13. Torkjazi, Mohammad & Huynh, Nathan & Shiri, Samaneh, 2018. "Truck appointment systems considering impact to drayage truck tours," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 208-228.
    14. Jacobsson, Stefan & Arnäs, Per Olof & Stefansson, Gunnar, 2018. "Differentiation of access management services at seaport terminals: Facilitating potential improvements for road hauliers," Journal of Transport Geography, Elsevier, vol. 70(C), pages 256-264.
    15. Leonard Heilig & Stefan Voß, 2017. "Inter-terminal transportation: an annotated bibliography and research agenda," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 35-63, March.
    16. Branislav Dragovic & Nenad Dj. Zrnic, 2011. "A Queuing Model Study of Port Performance Evolution," Analele Universitatii "Eftimie Murgu" Resita Fascicola de Inginerie, "Eftimie Murgu" University of Resita, vol. 2(XVIII), pages 65-76, December.
    17. Xiaoju Zhang & Qingcheng Zeng & Zhongzhen Yang, 2019. "Optimization of truck appointments in container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(1), pages 125-145, March.
    18. Enrico Musso & Anna Sciomachen, 2020. "Impact of megaships on the performance of port container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(3), pages 432-445, September.
    19. Neven Grubisic & Tomislav Krljan & Livia Maglić & Siniša Vilke, 2020. "The Microsimulation Model for Assessing the Impact of Inbound Traffic Flows for Container Terminals Located near City Centers," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    20. Enrico Musso & Anna Sciomachen, 0. "Impact of megaships on the performance of port container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 0, pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8168-:d:1149390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.