IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p676-d1020705.html
   My bibliography  Save this article

Study on the Spatio-Temporal Evolution and Influential Factors of Green Innovation Efficiency in Urban Agglomerations of China

Author

Listed:
  • Shan Feng

    (Institute of Ocean Development, Key Research Base of Humanities and Social Sciences, Ministry of Education, Qingdao 266100, China)

  • Yawen Kong

    (School of Economics, Ocean University of China, Qingdao 266100, China)

  • Shuguang Liu

    (Institute of Ocean Development, Key Research Base of Humanities and Social Sciences, Ministry of Education, Qingdao 266100, China
    School of Economics, Ocean University of China, Qingdao 266100, China)

  • Hongwei Zhou

    (School of Economics, Ocean University of China, Qingdao 266100, China)

Abstract

Promoting green innovation efficiency in urban agglomerations (UAs) can help to ensure the sustainability of China in a competitive but fragile post-industrialization era. This paper applies the Super Slacks-Based Measure model (Super-SBM) to measure the green innovation efficiency in 19 UAs of China from 2006 to 2018. Then, it examines the spatial-temporal evolution characteristics from the perspectives of geography and economics. Furthermore, the spatial econometric model is also established to explore the influential factors of green innovation efficiency, as well as its regional differences. The results reveal the following: (1) From the perspective of temporal differentiation, the green innovation efficiency of most UAs in China presents a fluctuated increase during the study period, and UAs located in the east are more ideal. (2) As for spatial differentiation, the number of UAs of a high value level is relatively stable, and the southeast coastal UAs performs as the core and a stepped pattern of “east > center > west” is clear. (3) A significant positive spatial spillover effect of green innovation efficiency does exist in UAs of China, and the effects of relative factors vary across regions. Differentiated measures should be taken to improve the green innovation efficiency in the UAs of China. This study provides significant guidance for realizing the goal of high-quality development in China, as well as fulfilling the international commitment of carbon peak and carbon neutrality.

Suggested Citation

  • Shan Feng & Yawen Kong & Shuguang Liu & Hongwei Zhou, 2022. "Study on the Spatio-Temporal Evolution and Influential Factors of Green Innovation Efficiency in Urban Agglomerations of China," Sustainability, MDPI, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:676-:d:1020705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/676/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/676/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheming Yan & Rui Shi & Kerui Du & Lan Yi, 2022. "The role of green production process innovation in green manufacturing: empirical evidence from OECD countries," Applied Economics, Taylor & Francis Journals, vol. 54(59), pages 6755-6767, December.
    2. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    3. Zhong Fang & Hua Bai & Yuriy Bilan, 2019. "Evaluation Research of Green Innovation Efficiency in China’s Heavy Polluting Industries," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    4. Tong Zhao & Haihua Zhou & Jinde Jiang & Wenyan Yan, 2022. "Impact of Green Finance and Environmental Regulations on the Green Innovation Efficiency in China," Sustainability, MDPI, vol. 14(6), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning Geng & Zengjin Liu & Xuejiao Wang & Lin Meng & Jiayan Pan, 2022. "Measurement of Green Total Factor Productivity and Its Spatial Convergence Test on the Pig-Breeding Industry in China," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    2. Lingzhang Kong & Jinye Li, 2022. "Digital Economy Development and Green Economic Efficiency: Evidence from Province-Level Empirical Data in China," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    3. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    4. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    5. Honma, Satoshi, 2012. "Environmental and economic efficiencies in the Asia-Pacific region," MPRA Paper 43361, University Library of Munich, Germany.
    6. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    7. Le Sun & Congmou Zhu & Shaofeng Yuan & Lixia Yang & Shan He & Wuyan Li, 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    8. Senhua Huang & Lingming Chen, 2023. "The Impact of the Digital Economy on the Urban Total-Factor Energy Efficiency: Evidence from 275 Cities in China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    9. Artur Wyszyński, 2017. "Sytuacja finansowa klubów Ekstraklasy w ujęciu metody DEA," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 2, pages 69-99.
    10. Wang, Xiuli, 2023. "Exploring the role of resource industry dependence and green finance in green development efficiency in the context of post-Covid-19 period," Resources Policy, Elsevier, vol. 85(PB).
    11. Can Zhang & Jixia Li, 2024. "The Impact of Official Promotion Incentives on Urban Ecological Welfare Performance and Its Spatial Effect," Sustainability, MDPI, vol. 16(7), pages 1-29, April.
    12. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    13. Zhao, Xing & Guo, Yifan & Feng, Tianchu, 2023. "Towards green recovery: Natural resources utilization efficiency under the impact of environmental information disclosure," Resources Policy, Elsevier, vol. 83(C).
    14. Zhangsheng Liu & Xiaolu Zhang & Liuqingqing Yang & Yinjie Shen, 2021. "Access to Digital Financial Services and Green Technology Advances: Regional Evidence from China," Sustainability, MDPI, vol. 13(9), pages 1-14, April.
    15. Mario Fortin & André Leclerc, 2011. "L’Efficience Des Cooperatives De Services Financiers: Une Analyse De La Contribution Du Milieu," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 82(1), pages 45-62, March.
    16. Ningyi Liu & Yongyu Wang, 2022. "Urban Agglomeration Ecological Welfare Performance and Spatial Convergence Research in the Yellow River Basin," Land, MDPI, vol. 11(11), pages 1-18, November.
    17. Min Ge & Kaili Yu & Ange Ding & Gaofeng Liu, 2022. "Input-Output Efficiency of Water-Energy-Food and Its Driving Forces: Spatial-Temporal Heterogeneity of Yangtze River Economic Belt, China," IJERPH, MDPI, vol. 19(3), pages 1-15, January.
    18. Yahya, Farzan & Lee, Chien-Chiang, 2023. "Disentangling the asymmetric effect of financialization on the green output gap," Energy Economics, Elsevier, vol. 125(C).
    19. Beáta Gavurová & Martina Halásková & Samuel Koróny, 2019. "Research and Development Indicators of EU28 Countries from Viewpoint of Super-efficiency DEA Analysis," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 67(1), pages 225-242.
    20. Chia-Nan Wang & Thi-Duong Nguyen & Min-Chun Yu, 2019. "Energy Use Efficiency Past-to-Future Evaluation: An International Comparison," Energies, MDPI, vol. 12(19), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:676-:d:1020705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.