IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p607-d1019244.html
   My bibliography  Save this article

Calculation and Optimization of the Carbon Sink Benefits of Green Space Plants in Residential Areas: A Case Study of Suojin Village in Nanjing

Author

Listed:
  • Qingqing Li

    (College of Art and Design, Nanjing Forestry University, Nanjing 210037, China)

  • Yueru Zhu

    (College of Art and Design, Nanjing Forestry University, Nanjing 210037, China)

  • Zunling Zhu

    (College of Art and Design, Nanjing Forestry University, Nanjing 210037, China)

Abstract

Objectives: In the “dual evaluation” of land space, the evaluation of the importance of ecosystem service functions and residential areas is important, playing a significant role in plants acting as carbon sinks and thereby achieving the transformation of low-carbon settlements. Methods: The paper compares and analyzes five models for quantifying carbon sink benefits and focuses on the national tree benefit calculator (NTBC) model, which is suitable for the carbon sequestration benefits of plants in residential areas, to (i) estimate and compare the economic benefits brought by trees and shrubs in residential areas, (ii) analyze the reasons for the differences between the current data and data for the next 20 years, and (iii) comprehensively evaluate the technical points related to the plant landscape in residential areas to assess whether they comply with the “Green Settlement Standard.” The index system was scored according to the standard. Result: The current data collected for existing trees and shrubs include the following: When the trees are in good condition, the order of the trees according to their economic benefits in the current year is Zelkova serrata > Cedrus deodara > Sapindus saponaria > Sophora japonica > Cinnamomum camphora > Prunus cerasifera > Magnolia grandiflora > Ulmus pumila > Acer L. > Lagerstroemia indica L. > Sapium sebiferum > Sabina > Punica granatum L. > Acer palmatum > Sapium sebiferum > Celtis sinensis Pers > Bambusa multiplex > Cycas > Melia azedarach L. > Pinus parviflora , and that of the trees in the next 20 years is Zelkova serrata > Cinnamomum camphora > Sophora japonica > Sapindus saponaria > Ulmus pumila > Cedrus deodara > Prunus cerasifera > Magnolia grandiflora > Acer L. > Sapium sebiferum > Cycas > Punica granatum L. > Lagerstroemia indica L. > Acer palmatum Thunb > Sabina > Bambusa multiplex > Broussonetia papyrifera > Celtis sinensis Pers > Melia azedarach L. > Pinus parviflora. The order of shrubs according to their economic gain in the current year is Photinia beauverdiana > Pittosporum tobira > Ligustrum lucidum > Viburnum odoratissimum > Buxus cephalantha , and that of the shrubs in the next 20 years is Ligustrum lucidum > Photinia beauverdiana > Pittosporum tobira > Buxus cephalantha > Viburnum odoratissimum . Conclusion: Using plants, the construction ideas, community structure and landscape maintenance of the carbon sink estimation system of residential areas should be updated according to three aspects to promote the quantification of the carbon sink benefits of green areas in urban settlements and the development of low-carbon settlements in China.

Suggested Citation

  • Qingqing Li & Yueru Zhu & Zunling Zhu, 2022. "Calculation and Optimization of the Carbon Sink Benefits of Green Space Plants in Residential Areas: A Case Study of Suojin Village in Nanjing," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:607-:d:1019244
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Wang & Liang Feng & Paul I. Palmer & Yi Liu & Shuangxi Fang & Hartmut Bösch & Christopher W. O’Dell & Xiaoping Tang & Dongxu Yang & Lixin Liu & ChaoZong Xia, 2020. "Large Chinese land carbon sink estimated from atmospheric carbon dioxide data," Nature, Nature, vol. 586(7831), pages 720-723, October.
    2. Jing Wang & Liang Feng & Paul I. Palmer & Yi Liu & Shuangxi Fang & Hartmut Bösch & Christopher W. O’Dell & Xiaoping Tang & Dongxu Yang & Lixin Liu & ChaoZong Xia, 2020. "Publisher Correction: Large Chinese land carbon sink estimated from atmospheric carbon dioxide data," Nature, Nature, vol. 588(7837), pages 19-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Shilei & Xia, Jun, 2021. "Forest harvesting restriction and forest restoration in China," Forest Policy and Economics, Elsevier, vol. 129(C).
    2. Bishan Wu, 2024. "Low-carbon development mechanism of energy industry from the perspective of carbon neutralization," Energy & Environment, , vol. 35(2), pages 628-643, March.
    3. Zhang, Qian & Cheng, Baodong & Diao, Gang & Tao, Chenlu & Wang, Can, 2023. "Does China's natural forest logging ban affect the stability of the timber import trade network?," Forest Policy and Economics, Elsevier, vol. 152(C).
    4. Longhui Li & Yue Zhang & Tianjun Zhou & Kaicun Wang & Can Wang & Tao Wang & Linwang Yuan & Kangxin An & Chenghu Zhou & Guonian Lü, 2022. "Mitigation of China’s carbon neutrality to global warming," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Mengcheng Li & Haimeng Liu & Shangkun Yu & Jianshi Wang & Yi Miao & Chengxin Wang, 2022. "Estimating the Decoupling between Net Carbon Emissions and Construction Land and Its Driving Factors: Evidence from Shandong Province, China," IJERPH, MDPI, vol. 19(15), pages 1-26, July.
    6. Hui Wen & Yi Li & Zirong Li & Xiaoxue Cai & Fengxia Wang, 2022. "Spatial Differentiation of Carbon Budgets and Carbon Balance Zoning in China Based on the Land Use Perspective," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    7. Ogwu Stephen Obinozie & Eze Afamefuna A. & Uzoigwe Joshua C. & Orji Anthony & Maduka Anne Chinonye & Onwe Joshua Chukwuma, 2023. "Global Warming and Atmospheric Carbon: Is Carbon Sequestration a Myth or Reality?," Studia Universitatis „Vasile Goldis” Arad – Economics Series, Sciendo, vol. 33(1), pages 28-56, March.
    8. Shiguang Shen & Chengcheng Wu & Zhenyu Gai & Chenjing Fan, 2023. "Analysis of the Spatiotemporal Evolution of the Net Carbon Sink Efficiency and Its Influencing Factors at the City Level in Three Major Urban Agglomerations in China," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    9. Mengting Dong & Zeyuan Liu & Xiufeng Ni & Zhulin Qi & Jinnan Wang & Qingyu Zhang, 2023. "Re-Evaluating the Value of Ecosystem Based on Carbon Benefit: A Case Study in Chengdu, China," Land, MDPI, vol. 12(8), pages 1-16, August.
    10. Ding, Tao & Li, Hao & Tan, Ruipeng & Zhao, Xin, 2023. "How does geopolitical risk affect carbon emissions?: An empirical study from the perspective of mineral resources extraction in OECD countries," Resources Policy, Elsevier, vol. 85(PB).
    11. Kai Liu & Ziyi Ni & Mei Ren & Xiaoqing Zhang, 2022. "Spatial Differences and Influential Factors of Urban Carbon Emissions in China under the Target of Carbon Neutrality," IJERPH, MDPI, vol. 19(11), pages 1-14, May.
    12. Duan Huang & Lijie Xu & Shilin Zou & Bo Liu & Hengkai Li & Luoman Pu & Hong Chi, 2024. "Mapping Paddy Rice in Rice–Wetland Coexistence Zone by Integrating Sentinel-1 and Sentinel-2 Data," Agriculture, MDPI, vol. 14(3), pages 1-20, February.
    13. Mingxu Liu & Fang Shang & Xingjie Lu & Xin Huang & Yu Song & Bing Liu & Qiang Zhang & Xuejun Liu & Junji Cao & Tingting Xu & Tiantian Wang & Zhenying Xu & Wen Xu & Wenling Liao & Ling Kang & Xuhui Cai, 2022. "Unexpected response of nitrogen deposition to nitrogen oxide controls and implications for land carbon sink," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Junyi Liu & Zhixiang Wu & Siqi Yang & Chuan Yang, 2022. "Sensitivity Analysis of Biome-BGC for Gross Primary Production of a Rubber Plantation Ecosystem: A Case Study of Hainan Island, China," IJERPH, MDPI, vol. 19(21), pages 1-13, October.
    15. Yanling Jin & Yi Xu & Rui Li & Changping Zhao & Zhenghui Yuan, 2022. "Comprehensive Evaluation of China’s Input–Output Sector Status Based on the Entropy Weight-Social Network Analysis Method," Sustainability, MDPI, vol. 14(21), pages 1-25, November.
    16. Zhen Yu & Philippe Ciais & Shilong Piao & Richard A. Houghton & Chaoqun Lu & Hanqin Tian & Evgenios Agathokleous & Giri Raj Kattel & Stephen Sitch & Daniel Goll & Xu Yue & Anthony Walker & Pierre Frie, 2022. "Forest expansion dominates China’s land carbon sink since 1980," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Chaochao Du & Xiaoyong Bai & Yangbing Li & Qiu Tan & Cuiwei Zhao & Guangjie Luo & Luhua Wu & Fei Chen & Chaojun Li & Chen Ran & Xuling Luo & Huipeng Xi & Huan Chen & Sirui Zhang & Min Liu & Suhua Gong, 2022. "Inventory of China’s Net Biome Productivity since the 21st Century," Land, MDPI, vol. 11(8), pages 1-16, August.
    18. Lin Wang & Junsan Zhao & Fengxia Li & Guoping Chen, 2023. "Spatial Coupling of Carbon Sink Capacity with High-Quality Development Based on Exploitation and Protection Pattern," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    19. Zhengmeng Hou & Jiashun Luo & Yachen Xie & Lin Wu & Liangchao Huang & Ying Xiong, 2022. "Carbon Circular Utilization and Partially Geological Sequestration: Potentialities, Challenges, and Trends," Energies, MDPI, vol. 16(1), pages 1-14, December.
    20. Zhang, Xiong & Liu, Wei & Chen, Jie & Jiang, Deyi & Fan, Jinyang & Daemen, J.J.K. & Qiao, Weibiao, 2022. "Large-scale CO2 disposal/storage in bedded rock salt caverns of China: An evaluation of safety and suitability," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:607-:d:1019244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.