IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4663-d793230.html
   My bibliography  Save this article

Power Quality Improvement in Renewable-Energy-Based Microgrid Clusters Using Fuzzy Space Vector PWM Controlled Inverter

Author

Listed:
  • Sivakavi Naga Venkata Bramareswara Rao

    (Department of Electrical and Electronics Engineering, Sir C. R. Reddy College of Engineering, Eluru 534007, Andhra Pradesh, India)

  • Yellapragada Venkata Pavan Kumar

    (School of Electronics Engineering, VIT-AP University, Amaravati 522237, Andhra Pradesh, India)

  • Darsy John Pradeep

    (School of Electronics Engineering, VIT-AP University, Amaravati 522237, Andhra Pradesh, India)

  • Challa Pradeep Reddy

    (School of Computer Science and Engineering, VIT-AP University, Amaravati 522237, Andhra Pradesh, India)

  • Aymen Flah

    (Energy Processes Environment and Electrical Systems Unit, National Engineering School of Gabes, University of Gabes, Gabes 6029, Tunisia)

  • Habib Kraiem

    (Department of Electrical Engineering, College of Engineering, Northern Border University, Arar 73222, Saudi Arabia)

  • Jawad F. Al-Asad

    (Electrical Engineering Department, Prince Mohammad Bin Fahd University, Khobar 31952, Saudi Arabia)

Abstract

An increased electricity demand and dynamic load changes are creating a huge burden on the modern utility grid, thereby affecting supply reliability and quality. It is thus crucial for modern power system researchers to focus on these aspects to reduce grid outages. High-quality power is always desired to run various businesses smoothly, but power-electronic-converter-based renewable energy integrated into the utility grid is the major source of power quality issues. Many solutions are constantly being invented, yet a continuous effort and new optimized solutions are encouraged to address these issues by adhering to various global standards (IEC, IEEE, EN, etc.). This paper therefore proposes a concept of establishing a renewable-energy-based microgrid cluster by integrating various buildings located in an urban community. This enhances power supply reliability by managing the available energy in the cluster without depending on the utility grid. Further, a “fuzzy space vector pulse width modulation” (FSV-PWM) technique is proposed to control the inverter, which improves the power supply quality. This work uniquely optimized the dq reference currents using fuzzy logic theory, which were used to plot the space vectors with effective sector selection to generate accurate PWM signals for inverter control. The modeling/simulation of the microgrid cluster involving the FSV-PWM-based inverter was carried out using MATLAB/Simulink ® . The efficacy of the proposed FSV-PWM over the conventional ST-PWM was verified by plotting voltage, frequency, real/reactive power, and harmonic distortion characteristics. Various power quality indices were calculated under different disturbance conditions. The results showed that the use of the proposed FSV-PWM-based inverter adhered to all the key standard requirements, while the conventional system failed in most of the indices.

Suggested Citation

  • Sivakavi Naga Venkata Bramareswara Rao & Yellapragada Venkata Pavan Kumar & Darsy John Pradeep & Challa Pradeep Reddy & Aymen Flah & Habib Kraiem & Jawad F. Al-Asad, 2022. "Power Quality Improvement in Renewable-Energy-Based Microgrid Clusters Using Fuzzy Space Vector PWM Controlled Inverter," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4663-:d:793230
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4663/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4663/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kakran, Sandeep & Chanana, Saurabh, 2018. "Smart operations of smart grids integrated with distributed generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 524-535.
    2. Naderi, Yahya & Hosseini, Seyed Hossein & Ghassem Zadeh, Saeid & Mohammadi-Ivatloo, Behnam & Vasquez, Juan C. & Guerrero, Josep M., 2018. "An overview of power quality enhancement techniques applied to distributed generation in electrical distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 201-214.
    3. Sumaya Jahan & Shuvra Prokash Biswas & Md. Kamal Hosain & Md. Rabiul Islam & Safa Haq & Abbas Z. Kouzani & M A Parvez Mahmud, 2021. "An Advanced Control Technique for Power Quality Improvement of Grid-Tied Multilevel Inverter," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingang Tan & Chaohai Zhang & Bin Chen, 2022. "Size Estimation of Bulk Capacitor Removal Using Limited Power Quality Monitors in the Distribution Network," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    2. Khaled Chahine & Mohamad Tarnini & Nazih Moubayed & Abdallah El Ghaly, 2023. "Power Quality Enhancement of Grid-Connected Renewable Systems Using a Matrix-Pencil-Based Active Power Filter," Sustainability, MDPI, vol. 15(1), pages 1-19, January.
    3. Sivakavi Naga Venkata Bramareswara Rao & Venkata Pavan Kumar Yellapragada & Kottala Padma & Darsy John Pradeep & Challa Pradeep Reddy & Mohammad Amir & Shady S. Refaat, 2022. "Day-Ahead Load Demand Forecasting in Urban Community Cluster Microgrids Using Machine Learning Methods," Energies, MDPI, vol. 15(17), pages 1-25, August.
    4. Min Zhang & Huiqiang Zhi & Shifeng Zhang & Rui Fan & Ran Li & Jinhao Wang, 2022. "Modeling of Non-Characteristic Third Harmonics Produced by Voltage Source Converter under Unbalanced Condition," Sustainability, MDPI, vol. 14(11), pages 1-15, May.
    5. Gogulamudi Pradeep Reddy & Yellapragada Venkata Pavan Kumar & Maddikera Kalyan Chakravarthi & Aymen Flah, 2022. "Refined Network Topology for Improved Reliability and Enhanced Dijkstra Algorithm for Optimal Path Selection during Link Failures in Cluster Microgrids," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    6. Yan Yang & Yeqin Wang & Weixing Zhang & Zhenghao Li & Rui Liang, 2022. "Design of Adaptive Fuzzy Sliding-Mode Control for High-Performance Islanded Inverter in Micro-Grid," Energies, MDPI, vol. 15(23), pages 1-25, December.
    7. Yellapragada Venkata Pavan Kumar & Sivakavi Naga Venkata Bramareswara Rao & Kottala Padma & Challa Pradeep Reddy & Darsy John Pradeep & Aymen Flah & Habib Kraiem & Michał Jasiński & Srete Nikolovski, 2022. "Fuzzy Hysteresis Current Controller for Power Quality Enhancement in Renewable Energy Integrated Clusters," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    8. Ionescu, Romeo-Victor & Zlati, Monica Laura & Antohi, Valentin-Marian & Susanu, Irina Olimpia & Cristache, Nicoleta, 2022. "A new approach on renewable energy as a support for regional economic development among the European Union," Technological Forecasting and Social Change, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yellapragada Venkata Pavan Kumar & Sivakavi Naga Venkata Bramareswara Rao & Kottala Padma & Challa Pradeep Reddy & Darsy John Pradeep & Aymen Flah & Habib Kraiem & Michał Jasiński & Srete Nikolovski, 2022. "Fuzzy Hysteresis Current Controller for Power Quality Enhancement in Renewable Energy Integrated Clusters," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    2. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    3. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    4. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    5. Amro M Elshurafa & Abdel Rahman Muhsen, 2019. "The Upper Limit of Distributed Solar PV Capacity in Riyadh: A GIS-Assisted Study," Sustainability, MDPI, vol. 11(16), pages 1-20, August.
    6. Walzberg, Julien & Dandres, Thomas & Merveille, Nicolas & Cheriet, Mohamed & Samson, Réjean, 2020. "Should we fear the rebound effect in smart homes?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    7. José Adriano da Costa & David Alves Castelo Branco & Max Chianca Pimentel Filho & Manoel Firmino de Medeiros Júnior & Neilton Fidelis da Silva, 2019. "Optimal Sizing of Photovoltaic Generation in Radial Distribution Systems Using Lagrange Multipliers," Energies, MDPI, vol. 12(9), pages 1-19, May.
    8. Kalim Ullah & Sajjad Ali & Taimoor Ahmad Khan & Imran Khan & Sadaqat Jan & Ibrar Ali Shah & Ghulam Hafeez, 2020. "An Optimal Energy Optimization Strategy for Smart Grid Integrated with Renewable Energy Sources and Demand Response Programs," Energies, MDPI, vol. 13(21), pages 1-17, November.
    9. Seongwoo Lee & Joonho Seon & Byungsun Hwang & Soohyun Kim & Youngghyu Sun & Jinyoung Kim, 2024. "Recent Trends and Issues of Energy Management Systems Using Machine Learning," Energies, MDPI, vol. 17(3), pages 1-24, January.
    10. Rosato, Antonello & Panella, Massimo & Andreotti, Amedeo & Mohammed, Osama A. & Araneo, Rodolfo, 2021. "Two-stage dynamic management in energy communities using a decision system based on elastic net regularization," Applied Energy, Elsevier, vol. 291(C).
    11. Ali Abedaljabar Al-Samawi & Hafedh Trabelsi, 2022. "New Nine-Level Cascade Multilevel Inverter with a Minimum Number of Switches for PV Systems," Energies, MDPI, vol. 15(16), pages 1-25, August.
    12. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    13. Rosaria E.C. Amaral & Joel Brito & Matt Buckman & Elicia Drake & Esther Ilatova & Paige Rice & Carlos Sabbagh & Sergei Voronkin & Yewande S. Abraham, 2020. "Waste Management and Operational Energy for Sustainable Buildings: A Review," Sustainability, MDPI, vol. 12(13), pages 1-21, July.
    14. Muhammad Awais & Nadeem Javaid & Khursheed Aurangzeb & Syed Irtaza Haider & Zahoor Ali Khan & Danish Mahmood, 2018. "Towards Effective and Efficient Energy Management of Single Home and a Smart Community Exploiting Heuristic Optimization Algorithms with Critical Peak and Real-Time Pricing Tariffs in Smart Grids," Energies, MDPI, vol. 11(11), pages 1-30, November.
    15. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    16. Michał Gwóźdź & Łukasz Ciepliński, 2021. "An Algorithm for Calculation and Extraction of the Grid Voltage Component," Energies, MDPI, vol. 14(16), pages 1-12, August.
    17. Lakshmana Perumal Pattathurani & Subhransu S. Dash & Rajat K. Dwibedi & Mani Devesh Raj & Raju Kannadasan & Max F. Savio & Mohammed H. Alsharif & James Hyungkwan Kim, 2022. "Harmonics Minimisation in Non-Linear Grid System Using an Intelligent Hysteresis Current Controller Operated from a Solar Powered ZETA Converter," Sustainability, MDPI, vol. 14(12), pages 1-14, June.
    18. Fernando Martins & Pedro Moura & Aníbal T. de Almeida, 2022. "The Role of Electrification in the Decarbonization of the Energy Sector in Portugal," Energies, MDPI, vol. 15(5), pages 1-35, February.
    19. Lüth, Alexandra & Zepter, Jan Martin & Crespo del Granado, Pedro & Egging, Ruud, 2018. "Local electricity market designs for peer-to-peer trading: The role of battery flexibility," Applied Energy, Elsevier, vol. 229(C), pages 1233-1243.
    20. Wei Sun & Sam Harrison & Gareth P. Harrison, 2020. "Value of Local Offshore Renewable Resource Diversity for Network Hosting Capacity," Energies, MDPI, vol. 13(22), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4663-:d:793230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.