IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4461-d789868.html
   My bibliography  Save this article

Potential Evolution of the Cooling Market in the EU27+UK: An Outlook until 2030

Author

Listed:
  • Simon Pezzutto

    (Institute for Renewable Energy, European Academy of Bolzano (EURAC Research), Viale Druso 1, 39100 Bolzano, Italy)

  • Giulio Quaglini

    (Institute for Renewable Energy, European Academy of Bolzano (EURAC Research), Viale Druso 1, 39100 Bolzano, Italy)

  • Andrea Zambito

    (Institute for Renewable Energy, European Academy of Bolzano (EURAC Research), Viale Druso 1, 39100 Bolzano, Italy)

  • Antonio Novelli

    (Planetek Italia, Via Massaua 12, 70132 Bari, Italy)

  • Philippe Riviere

    (Directorate-General for Energy (DG Energy), European Commission, Unit B3—Buildings and Products, 1049 Brussel, Belgium
    Center for Energy Efficient Systems (CES), Department of Energy and Processes (DEP), Mines ParisTech, PSL University, 60 Boulevard Saint-Michel, CEDEX 06, 75272 Paris, France)

  • Lukas Kranzl

    (Energy Economics Group, Institute of Energy Systems and Electric Drives, TU Wien, Gusshausstrasse 25-29/370-3, 1040 Vienna, Austria)

  • Eric Wilczynski

    (Institute for Renewable Energy, European Academy of Bolzano (EURAC Research), Viale Druso 1, 39100 Bolzano, Italy)

Abstract

This study investigates insights concerning the future of the cooling market of the European Union (plus the United Kingdom) and its possible development for the upcoming decade (until 2030). In this manuscript, a qualitative model—Porter’s five forces analysis (PFFA)—and a quantitative tool—multi-criteria decision analysis (MCDA)—have been applied to produce a forecast and a corresponding validation technique. It has been observed that the MCDA tool came to a similar conclusion as the PFFA methodology, highlighting that, presumably, the cooling market will continue to grow moderately, mainly thanks to research and development (R&D) as the central driving force. Moreover, the latter is strictly connected with R&D developments, economic crises, and the welfare of the European population. Additionally, in this study, an extensive survey conducted on interviews of experts throughout each European country confirmed the slightly positive future developments forecast up to 2030 from the quantitative and qualitative methods mentioned above. The results of the study describe a steady growth of the cooling market in Europe until 2030 of about 1–2% annual increase, for a total gain of 24%.

Suggested Citation

  • Simon Pezzutto & Giulio Quaglini & Andrea Zambito & Antonio Novelli & Philippe Riviere & Lukas Kranzl & Eric Wilczynski, 2022. "Potential Evolution of the Cooling Market in the EU27+UK: An Outlook until 2030," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4461-:d:789868
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4461/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4461/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simon Pezzutto & Gianluca Grilli & Stefano Zambotti & Stefan Dunjic, 2018. "Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence," Energies, MDPI, vol. 11(6), pages 1-18, June.
    2. Moreno, Blanca & López, Ana J. & García-Álvarez, María Teresa, 2012. "The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms," Energy, Elsevier, vol. 48(1), pages 307-313.
    3. Li, Yang & Wang, Jinlong & Zhao, Dongbo & Li, Guoqing & Chen, Chen, 2018. "A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making," Energy, Elsevier, vol. 162(C), pages 237-254.
    4. Murthy, Pushpa S. & Madhava Naidu, M., 2012. "Sustainable management of coffee industry by-products and value addition—A review," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 45-58.
    5. Gang, Wenjie & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2016. "District cooling systems: Technology integration, system optimization, challenges and opportunities for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 253-264.
    6. Simon Pezzutto & Matteo De Felice & Reza Fazeli & Lukas Kranzl & Stefano Zambotti, 2017. "Status Quo of the Air-Conditioning Market in Europe: Assessment of the Building Stock," Energies, MDPI, vol. 10(9), pages 1-17, August.
    7. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    8. Li, Yang & Li, Yahui & Li, Guoqing & Zhao, Dongbo & Chen, Chen, 2018. "Two-stage multi-objective OPF for AC/DC grids with VSC-HVDC: Incorporating decisions analysis into optimization process," Energy, Elsevier, vol. 147(C), pages 286-296.
    9. Juan Francisco De Negri & Simon Pezzutto & Sonia Gantioler & David Moser & Wolfram Sparber, 2020. "A Comprehensive Analysis of Public and Private Funding for Photovoltaics Research and Development in the European Union, Norway, and Turkey," Energies, MDPI, vol. 13(11), pages 1-23, May.
    10. Dariush Khezrimotlagh & Yao Chen, 2018. "The Optimization Approach," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 107-134, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Pezzutto & Giulio Quaglini & Philippe Riviere & Lukas Kranzl & Antonio Novelli & Andrea Zambito & Luigi Bottecchia & Eric Wilczynski, 2022. "Space Cooling Market in Europe: Assessment of the Final Energy Consumption for the Year 2016," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    2. Simon Pezzutto & Philippe Riviere & Lukas Kranzl & Andrea Zambito & Giulio Quaglini & Antonio Novelli & Marcus Hummel & Luigi Bottecchia & Eric Wilczynski, 2022. "Recent Advances in District Cooling Diffusion in the EU27+UK: An Assessment of the Market," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    3. Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
    4. Henrique Pires Corrêa & Rafael Ribeiro de Carvalho Vaz & Flávio Henrique Teles Vieira & Sérgio Granato de Araújo, 2019. "Reliability Based Genetic Algorithm Applied to Allocation of Fiber Optics Links for Power Grid Automation," Energies, MDPI, vol. 12(11), pages 1-26, May.
    5. Jamin Koo & Soung-Ryong Oh & Yeo-Ul Choi & Jae-Hoon Jung & Kyungtae Park, 2019. "Optimization of an Organic Rankine Cycle System for an LNG-Powered Ship," Energies, MDPI, vol. 12(10), pages 1-17, May.
    6. Shitu Zhang & Zhixun Zhu & Yang Li, 2021. "A Critical Review of Data-Driven Transient Stability Assessment of Power Systems: Principles, Prospects and Challenges," Energies, MDPI, vol. 14(21), pages 1-13, November.
    7. Hossam M J Mustafa & Masri Ayob & Mohd Zakree Ahmad Nazri & Graham Kendall, 2019. "An improved adaptive memetic differential evolution optimization algorithms for data clustering problems," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-28, May.
    8. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
    9. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    10. Donovin D. Lewis & Aron Patrick & Evan S. Jones & Rosemary E. Alden & Abdullah Al Hadi & Malcolm D. McCulloch & Dan M. Ionel, 2023. "Decarbonization Analysis for Thermal Generation and Regionally Integrated Large-Scale Renewables Based on Minutely Optimal Dispatch with a Kentucky Case Study," Energies, MDPI, vol. 16(4), pages 1-23, February.
    11. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    12. Mika Fabricius & Daniel Øland Tarp & Thomas Wehl Rasmussen & Ahmad Arabkoohsar, 2020. "Utilization of Excess Production of Waste-Fired CHP Plants for District Cooling Supply, an Effective Solution for a Serious Challenge," Energies, MDPI, vol. 13(13), pages 1-21, June.
    13. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    14. Zhou, Xu & Ma, Zhongjing & Zou, Suli & Zhang, Jinhui, 2022. "Consensus-based distributed economic dispatch for Multi Micro Energy Grid systems under coupled carbon emissions," Applied Energy, Elsevier, vol. 324(C).
    15. Wang, Jiawei & You, Shi & Zong, Yi & Træholt, Chresten & Dong, Zhao Yang & Zhou, You, 2019. "Flexibility of combined heat and power plants: A review of technologies and operation strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Xu Chen & Shuai Fang & Kangji Li, 2023. "Reinforcement-Learning-Based Multi-Objective Differential Evolution Algorithm for Large-Scale Combined Heat and Power Economic Emission Dispatch," Energies, MDPI, vol. 16(9), pages 1-23, April.
    17. Zabala, Laura & Febres, Jesus & Sterling, Raymond & López, Susana & Keane, Marcus, 2020. "Virtual testbed for model predictive control development in district cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    18. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Elattar, Ehab & Ginidi, Ahmed R., 2022. "An Amalgamated Heap and Jellyfish Optimizer for economic dispatch in Combined heat and power systems including N-1 Unit outages," Energy, Elsevier, vol. 246(C).
    19. Muhammad Faisal Shehzad & Mainak Dan & Valerio Mariani & Seshadhri Srinivasan & Davide Liuzza & Carmine Mongiello & Roberto Saraceno & Luigi Glielmo, 2021. "A Heuristic Algorithm for Combined Heat and Power System Operation Management," Energies, MDPI, vol. 14(6), pages 1-22, March.
    20. Schüppler, Simon & Fleuchaus, Paul & Duchesne, Antoine & Blum, Philipp, 2022. "Cooling supply costs of a university campus," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4461-:d:789868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.