IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p4249-d786327.html
   My bibliography  Save this article

Wind Energy Assessments in the Northern Romanian Coastal Environment Based on 20 Years of Data Coming from Different Sources

Author

Listed:
  • Victoria Yildirir

    (Department of Mechanical Engineering, Faculty of Engineering, “Dunarea de Jos” University of Galati, 800008 Galati, Romania)

  • Eugen Rusu

    (Department of Mechanical Engineering, Faculty of Engineering, “Dunarea de Jos” University of Galati, 800008 Galati, Romania)

  • Florin Onea

    (Department of Mechanical Engineering, Faculty of Engineering, “Dunarea de Jos” University of Galati, 800008 Galati, Romania)

Abstract

Based on the fact that the wind speed tends to increase as we go from onshore to offshore, the aim of this work is to perform an analysis of a Romanian coastal sector located near the Danube Delta. Over the course of 20 years (2001–2020), in situ observations and reanalysis data (ERA5 and MERRA-2) of the local wind conditions were evaluated from a meteorological and renewable point of view. This evaluation includes two onshore sites (Galati and Tulcea), one site located near the shoreline (Sulina) and also two offshore sites defined at 64 and 126 km from the coastline. From the comparison with in situ measurements, it was found that ERA5 shows a better agreement with the onshore sites, while for the Sulina site the MERRA-2 is more accurate. Additionally, it was highlighted that by using only four values per day of reanalysis data (00:06:12:18 UTC), the average wind speed is similar with the one from the hourly data. As for a wind turbine performance (hub height of 100 m), in the case of the onshore sites the downtime period is much higher during the night (up to 63%) compared to only 23% indicated by the offshore ones during the entire day.

Suggested Citation

  • Victoria Yildirir & Eugen Rusu & Florin Onea, 2022. "Wind Energy Assessments in the Northern Romanian Coastal Environment Based on 20 Years of Data Coming from Different Sources," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4249-:d:786327
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/4249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/4249/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rusu, Eugen, 2019. "A 30-year projection of the future wind energy resources in the coastal environment of the Black Sea," Renewable Energy, Elsevier, vol. 139(C), pages 228-234.
    2. Stanislav Myslenkov & Alexander Zelenko & Yuriy Resnyanskii & Victor Arkhipkin & Ksenia Silvestrova, 2021. "Quality of the Wind Wave Forecast in the Black Sea Including Storm Wave Analysis," Sustainability, MDPI, vol. 13(23), pages 1-21, November.
    3. Maryna Garan & Khaoula Tidriri & Iaroslav Kovalenko, 2022. "A Data-Centric Machine Learning Methodology: Application on Predictive Maintenance of Wind Turbines," Energies, MDPI, vol. 15(3), pages 1-21, January.
    4. Florin Onea & Andrés Ruiz & Eugen Rusu, 2020. "An Evaluation of the Wind Energy Resources along the Spanish Continental Nearshore," Energies, MDPI, vol. 13(15), pages 1-23, August.
    5. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    6. Stoyan Kanev, 2019. "On the Robustness of Active Wake Control to Wind Turbine Downtime," Energies, MDPI, vol. 12(16), pages 1-13, August.
    7. Florin Onea & Eugen Rusu, 2018. "Sustainability of the Reanalysis Databases in Predicting the Wind and Wave Power along the European Coasts," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
    8. Eugen Rusu & Florin Onea, 2017. "Joint Evaluation of the Wave and Offshore Wind Energy Resources in the Developing Countries," Energies, MDPI, vol. 10(11), pages 1-20, November.
    9. Yuka Kikuchi & Takeshi Ishihara, 2021. "Availability and LCOE Analysis Considering Failure Rate and Downtime for Onshore Wind Turbines in Japan," Energies, MDPI, vol. 14(12), pages 1-17, June.
    10. Daniel Ganea & Elena Mereuta & Liliana Rusu, 2018. "Estimation of the Near Future Wind Power Potential in the Black Sea," Energies, MDPI, vol. 11(11), pages 1-21, November.
    11. Rabbani, R. & Zeeshan, M., 2020. "Exploring the suitability of MERRA-2 reanalysis data for wind energy estimation, analysis of wind characteristics and energy potential assessment for selected sites in Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 1240-1251.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lo Re, Carlo & Manno, Giorgio & Basile, Mirko & Ciraolo, Giuseppe, 2022. "The opportunity of using wave energy converters in a Mediterranean hot spot," Renewable Energy, Elsevier, vol. 196(C), pages 1095-1114.
    2. Bukurije Hoxha & Igor K. Shesho & Risto V. Filkoski, 2022. "Analysis of Wind Turbine Distances Using a Novel Techno-Spatial Approach in Complex Wind Farm Terrains," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    3. Hamza S. Abdalla Lagili & Aşkın Kiraz & Youssef Kassem & Hüseyin Gökçekuş, 2023. "Wind and Solar Energy for Sustainable Energy Production for Family Farms in Coastal Agricultural Regions of Libya Using Measured and Multiple Satellite Datasets," Energies, MDPI, vol. 16(18), pages 1-53, September.
    4. Hassna Salime & Badre Bossoufi & Youness El Mourabit & Saad Motahhir, 2023. "Robust Nonlinear Adaptive Control for Power Quality Enhancement of PMSG Wind Turbine: Experimental Control Validation," Sustainability, MDPI, vol. 15(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrés Ruiz & Florin Onea & Eugen Rusu, 2020. "Study Concerning the Expected Dynamics of the Wind Energy Resources in the Iberian Nearshore," Energies, MDPI, vol. 13(18), pages 1-25, September.
    2. Rusu, Eugen, 2022. "Assessment of the wind power dynamics in the North Sea under climate change conditions," Renewable Energy, Elsevier, vol. 195(C), pages 466-475.
    3. Rusu, Eugen, 2020. "An evaluation of the wind energy dynamics in the Baltic Sea, past and future projections," Renewable Energy, Elsevier, vol. 160(C), pages 350-362.
    4. Rusu, Eugen, 2019. "A 30-year projection of the future wind energy resources in the coastal environment of the Black Sea," Renewable Energy, Elsevier, vol. 139(C), pages 228-234.
    5. Rebecca J. Barthelmie & Kaitlyn E. Dantuono & Emma J. Renner & Frederick L. Letson & Sara C. Pryor, 2021. "Extreme Wind and Waves in U.S. East Coast Offshore Wind Energy Lease Areas," Energies, MDPI, vol. 14(4), pages 1-25, February.
    6. Majidi Nezhad, M. & Heydari, A. & Groppi, D. & Cumo, F. & Astiaso Garcia, D., 2020. "Wind source potential assessment using Sentinel 1 satellite and a new forecasting model based on machine learning: A case study Sardinia islands," Renewable Energy, Elsevier, vol. 155(C), pages 212-224.
    7. José Rafael Dorrego Portela & Geovanni Hernández Galvez & Quetzalcoatl Hernandez-Escobedo & Ricardo Saldaña Flores & Omar Sarracino Martínez & Orlando Lastres Danguillecourt & Pascual López de Paz & A, 2022. "Microscale Wind Assessment, Comparing Mesoscale Information and Observed Wind Data," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    8. de Aquino Ferreira, Saulo Custodio & Cyrino Oliveira, Fernando Luiz & Maçaira, Paula Medina, 2022. "Validation of the representativeness of wind speed time series obtained from reanalysis data for Brazilian territory," Energy, Elsevier, vol. 258(C).
    9. Jung, Christopher & Schindler, Dirk, 2022. "A review of recent studies on wind resource projections under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    10. Florin Onea & Liliana Rusu, 2018. "Evaluation of Some State-Of-The-Art Wind Technologies in the Nearshore of the Black Sea," Energies, MDPI, vol. 11(9), pages 1-16, September.
    11. Nezhad, M. Majidi & Neshat, M. & Groppi, D. & Marzialetti, P. & Heydari, A. & Sylaios, G. & Garcia, D. Astiaso, 2021. "A primary offshore wind farm site assessment using reanalysis data: a case study for Samothraki island," Renewable Energy, Elsevier, vol. 172(C), pages 667-679.
    12. Gil Ruiz, Samuel Andrés & Barriga, Julio Eduardo Cañón & Martínez, J. Alejandro, 2021. "Wind power assessment in the Caribbean region of Colombia, using ten-minute wind observations and ERA5 data," Renewable Energy, Elsevier, vol. 172(C), pages 158-176.
    13. Arkaitz Rabanal & Alain Ulazia & Gabriel Ibarra-Berastegi & Jon Sáenz & Unai Elosegui, 2018. "MIDAS: A Benchmarking Multi-Criteria Method for the Identification of Defective Anemometers in Wind Farms," Energies, MDPI, vol. 12(1), pages 1-19, December.
    14. Srihari Sundar & Michael T. Craig & Ashley E. Payne & David J. Brayshaw & Flavio Lehner, 2023. "Meteorological drivers of resource adequacy failures in current and high renewable Western U.S. power systems," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
    16. Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
    17. Alain Ulazia & Ander Nafarrate & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia, 2019. "The Consequences of Air Density Variations over Northeastern Scotland for Offshore Wind Energy Potential," Energies, MDPI, vol. 12(13), pages 1-18, July.
    18. Sweder Reuchlin & Rishikesh Joshi & Roland Schmehl, 2023. "Sizing of Hybrid Power Systems for Off-Grid Applications Using Airborne Wind Energy," Energies, MDPI, vol. 16(10), pages 1-15, May.
    19. Italo Fernandes & Felipe M. Pimenta & Osvaldo R. Saavedra & Arcilan T. Assireu, 2022. "Exploring the Complementarity of Offshore Wind Sites to Reduce the Seasonal Variability of Generation," Energies, MDPI, vol. 15(19), pages 1-24, September.
    20. Wiese, Frauke & Schlecht, Ingmar & Bunke, Wolf-Dieter & Gerbaulet, Clemens & Hirth, Lion & Jahn, Martin & Kunz, Friedrich & Lorenz, Casimir & Mühlenpfordt, Jonathan & Reimann, Juliane & Schill, Wolf-P, 2019. "Open Power System Data – Frictionless data for electricity system modelling," Applied Energy, Elsevier, vol. 236(C), pages 401-409.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4249-:d:786327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.