IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p4146-d783983.html
   My bibliography  Save this article

Salt Removal through Residue-Filled Cut-Soiler Simulated Preferential Shallow Subsurface Drainage Improves Yield, Quality and Plant Water Relations of Mustard ( Brassica juncea L.)

Author

Listed:
  • Neha

    (ICAR—Central Soil Salinity Research Institute, Karnal 132001, India
    Department of Agronomy, Choudhary Charan Singh Haryana Agricultural University, Hisar 125004, India)

  • Gajender Yadav

    (ICAR—Central Soil Salinity Research Institute, Karnal 132001, India)

  • Rajender Kumar Yadav

    (ICAR—Central Soil Salinity Research Institute, Karnal 132001, India)

  • Ashwani Kumar

    (ICAR—Central Soil Salinity Research Institute, Karnal 132001, India)

  • Aravind Kumar Rai

    (ICAR—Central Soil Salinity Research Institute, Karnal 132001, India)

  • Junya Onishi

    (Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba 305-8686, Japan)

  • Keisuke Omori

    (Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba 305-8686, Japan)

  • Parbodh Chander Sharma

    (ICAR—Central Soil Salinity Research Institute, Karnal 132001, India)

Abstract

Soil salinity and the use of saline groundwater are two major constraints in crop production, which covers a ~1.0 billion ha area of arid and semi-arid regions. The improved drainage function of soil can modify the salty growing environment for higher agricultural production. The present study evaluated the effectiveness of cut-soiler-constructed rice residue-filled preferential shallow subsurface drainage (PSSD) to improve the drainage function and its effect on the yield, quality and plant–water relations of mustard over 2019–2021. Cut-soiler-simulated drains were made in a semi-controlled lysimeter (2 × 2 × 3; L*W*H m) as the main plot treatment in a double replicated split–split experiment with two soil types (subplot) and three irrigation water salinities (4, 8 and 12 dS m −1 ) as the sub-sub-plot treatment. The drainage volume of variable salinity (EC), dependent on the total water input, was substantially higher in the rainy season (April to October), i.e., 16.6, 7.76 and 12.0% during 2018, 2019 and 2020, with 1.7, 0.32 and 0.77 kg salt removal per lysimeter, compared to the post-rainy season. The mustard seed, straw and biological yields were improved by 31.4, 14.41 and 18.08%, respectively, due to a positive effect on plant–water relations. The mustard seeds produced in the cut-soiler-treated plots recorded higher oil, crude fiber and protein contents and a lower erucic acid content. The increase in salt load, by higher-salinity irrigation water, was also efficiently managed by using cut-soiler PSSD. It was found that the saline irrigation water up to 12.0 dS m −1 can be used under such PSSD without any extra salt loading. The present study showed the potential of cut-soiler PSSD in root zone salinity management by improving drainage in salt-affected arid regions.

Suggested Citation

  • Neha & Gajender Yadav & Rajender Kumar Yadav & Ashwani Kumar & Aravind Kumar Rai & Junya Onishi & Keisuke Omori & Parbodh Chander Sharma, 2022. "Salt Removal through Residue-Filled Cut-Soiler Simulated Preferential Shallow Subsurface Drainage Improves Yield, Quality and Plant Water Relations of Mustard ( Brassica juncea L.)," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4146-:d:783983
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/4146/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/4146/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bandyopadhyay, K.K. & Pradhan, S. & Sahoo, R.N. & Singh, Ravender & Gupta, V.K. & Joshi, D.K. & Sutradhar, A.K., 2014. "Characterization of water stress and prediction of yield of wheat using spectral indices under varied water and nitrogen management practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 115-123.
    2. Boumans, J. H. & van Hoorn, J. W. & Kruseman, G. P. & Tanwar, B. S., 1988. "Water table control, reuse and disposal of drainage water in Haryana," Agricultural Water Management, Elsevier, vol. 14(1-4), pages 537-545, August.
    3. Mathew, E. K. & Panda, R. K. & Nair, Madhusudan, 2001. "Influence of subsurface drainage on crop production and soil quality in a low-lying acid sulphate soil," Agricultural Water Management, Elsevier, vol. 47(3), pages 191-209, April.
    4. Genxiang Feng & Zhanyu Zhang & Zemin Zhang, 2019. "Evaluating the Sustainable Use of Saline Water Irrigation on Soil Water-Salt Content and Grain Yield under Subsurface Drainage Condition," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    5. Ritzema, H.P. & Satyanarayana, T.V. & Raman, S. & Boonstra, J., 2008. "Subsurface drainage to combat waterlogging and salinity in irrigated lands in India: Lessons learned in farmers' fields," Agricultural Water Management, Elsevier, vol. 95(3), pages 179-189, March.
    6. Wakchaure, G.C. & Minhas, P.S. & Ratnakumar, P. & Choudhary, R.L., 2016. "Effect of plant bioregulators on growth, yield and water production functions of sorghum [Sorghum bicolor (L.) Moench]," Agricultural Water Management, Elsevier, vol. 177(C), pages 138-145.
    7. Jalota, S. K. & Arora, V. K., 2002. "Model-based assessment of water balance components under different cropping systems in north-west India," Agricultural Water Management, Elsevier, vol. 57(1), pages 75-87, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Ajay & Krause, Peter & Panda, Sudhindra N. & Flugel, Wolfgang-Albert, 2010. "Rising water table: A threat to sustainable agriculture in an irrigated semi-arid region of Haryana, India," Agricultural Water Management, Elsevier, vol. 97(10), pages 1443-1451, October.
    2. Darzi-Naftchali, Abdullah & Motevali, Ali & Keikha, Mahdi, 2022. "The life cycle assessment of subsurface drainage performance under rice-canola cropping system," Agricultural Water Management, Elsevier, vol. 266(C).
    3. Abdullah Darzi-Naftchali & Henk Ritzema, 2018. "Integrating Irrigation and Drainage Management to Sustain Agriculture in Northern Iran," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    4. Wakchaure, G.C. & Minhas, P.S. & Meena, Kamlesh K. & Singh, Narendra P. & Hegade, Priti M. & Sorty, Ajay M., 2018. "Growth, bulb yield, water productivity and quality of onion (Allium cepa L.) as affected by deficit irrigation regimes and exogenous application of plant bio–regulators," Agricultural Water Management, Elsevier, vol. 199(C), pages 1-10.
    5. Mehdi Jafari-Talukolaee & Henk Ritzema & Abdullah Darzi-Naftchali & Ali Shahnazari, 2016. "Subsurface Drainage to Enable the Cultivation of Winter Crops in Consolidated Paddy Fields in Northern Iran," Sustainability, MDPI, vol. 8(3), pages 1-19, March.
    6. Wakchaure, G.C. & Minhas, P.S. & Kumar, Satish & Khapte, P.S. & Rane, Jagadish & Reddy, K. Sammi, 2023. "Bulb productivity and quality of monsoon onion (Allium cepa L.) as affected by transient waterlogging at different growth stages and its alleviation with plant growth regulators," Agricultural Water Management, Elsevier, vol. 278(C).
    7. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    8. Jalota, S.K. & Sood, Anil & Harman, W.L., 2006. "Assessing the response of chickpea (Cicer aeritinum L.) yield to irrigation water on two soils in Punjab (India): A simulation analysis using the CROPMAN model," Agricultural Water Management, Elsevier, vol. 79(3), pages 312-320, February.
    9. Pritpal Singh & Gurdeep Singh & G. P. S. Sodhi, 2022. "Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2079-2119, February.
    10. Wakchaure, G.C. & Minhas, P.S. & Kumar, Satish & Khapte, P.S. & Dalvi, S.G. & Rane, J. & Reddy, K. Sammi, 2023. "Pod quality, yields responses and water productivity of okra (Abelmoschus esculentus L.) as affected by plant growth regulators and deficit irrigation," Agricultural Water Management, Elsevier, vol. 282(C).
    11. Qian, Yingzhi & Zhu, Yan & Ye, Ming & Huang, Jiesheng & Wu, Jingwei, 2021. "Experiment and numerical simulation for designing layout parameters of subsurface drainage pipes in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Vashisht, B.B. & Jalota, S.K. & Ramteke, P. & Kaur, Ramandeep & Jayeswal, D.K., 2021. "Impact of rice (O. sativa L.) straw incorporation induced changes in soil physical and chemical properties on yield, water and nitrogen–balance and –use efficiency of wheat (T. aestivum L.) in rice–wh," Agricultural Systems, Elsevier, vol. 194(C).
    13. Ying Li & Dong-Zi Pan, 2021. "Barrier Longevity of NaCl-Laden Soil against Subterranean Termites in an Earth Embankment," Sustainability, MDPI, vol. 13(23), pages 1-16, December.
    14. Jalota, S.K. & Singh, K.B. & Chahal, G.B.S. & Gupta, R.K. & Chakraborty, Somsubhra & Sood, Anil & Ray, S.S. & Panigrahy, S., 2009. "Integrated effect of transplanting date, cultivar and irrigation on yield, water saving and water productivity of rice (Oryza sativa L.) in Indian Punjab: Field and simulation study," Agricultural Water Management, Elsevier, vol. 96(7), pages 1096-1104, July.
    15. Ritzema, H.P., 2016. "Drain for Gain: Managing salinity in irrigated lands—A review," Agricultural Water Management, Elsevier, vol. 176(C), pages 18-28.
    16. Lenka, S. & Singh, A.K. & Lenka, N.K., 2009. "Water and nitrogen interaction on soil profile water extraction and ET in maize-wheat cropping system," Agricultural Water Management, Elsevier, vol. 96(2), pages 195-207, February.
    17. Ji, Xi-Bin & Kang, Er-Si & Chen, Ren-Sheng & Zhao, Wen-Zhi & Zhang, Zhi-Hui & Jin, Bo-Wen, 2007. "A mathematical model for simulating water balances in cropped sandy soil with conventional flood irrigation applied," Agricultural Water Management, Elsevier, vol. 87(3), pages 337-346, February.
    18. Li, S.X. & Wang, Z.H. & Li, S.Q. & Gao, Y.J., 2015. "Effect of nitrogen fertilization under plastic mulched and non-plastic mulched conditions on water use by maize plants in dryland areas of China," Agricultural Water Management, Elsevier, vol. 162(C), pages 15-32.
    19. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    20. Yuhui Yang & Dongwei Li & Weixiong Huang & Xinguo Zhou & Zhaoyang Li & Xiaomei Dong & Xingpeng Wang, 2022. "Effects of Subsurface Drainage on Soil Salinity and Groundwater Table in Drip Irrigated Cotton Fields in Oasis Regions of Tarim Basin," Agriculture, MDPI, vol. 12(12), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4146-:d:783983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.