IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3551-d773817.html
   My bibliography  Save this article

Optimization Model for Sustainable End-of-Life Vehicle Processing and Recycling

Author

Listed:
  • Shimaa Al-Quradaghi

    (Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar)

  • Qipeng P. Zheng

    (Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA)

  • Alberto Betancourt-Torcat

    (Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

  • Ali Elkamel

    (Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

Abstract

The aim of this paper is to provide a mathematical programming model for sustainable end-of-life vehicle processing and recycling. Environmental benefits and resource efficiency are achieved through the incorporation of a processing and recycling network that is based on industrial symbiosis whereby waste materials are converted into positive environmental externalities aimed at decreasing pollution and reducing the need for raw materials. A mixed-integer programming model for optimizing the exchange of material flows in the network is developed and applied on a real case study. The model selects the components that maximize reusable/recyclable material output while minimizing network costs. In addition, GHG emissions are calculated to assess the environmental benefits of the network. The model finds the optimal processing routes while maximizing the yield of the components of interest, maximizing profit, minimizing cost, or minimizing waste depending on which goals are chosen. The results are analyzed to provide insights about the network and the utility of the proposed methodology to improve sustainability of end-of-life vehicle recycling.

Suggested Citation

  • Shimaa Al-Quradaghi & Qipeng P. Zheng & Alberto Betancourt-Torcat & Ali Elkamel, 2022. "Optimization Model for Sustainable End-of-Life Vehicle Processing and Recycling," Sustainability, MDPI, vol. 14(6), pages 1-26, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3551-:d:773817
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3551/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3551/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aid, Graham & Eklund, Mats & Anderberg, Stefan & Baas, Leenard, 2017. "Expanding roles for the Swedish waste management sector in inter-organizational resource management," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 85-97.
    2. Shimaa Al-Quradaghi & Qipeng P. Zheng & Ali Elkamel, 2020. "Generalized Framework for the Design of Eco-Industrial Parks: Case Study of End-of-Life Vehicles," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    3. Sara Tessitore & Tiberio Daddi & Fabio Iraldo, 2015. "Eco-Industrial Parks Development and Integrated Management Challenges: Findings from Italy," Sustainability, MDPI, vol. 7(8), pages 1-16, July.
    4. D'Adamo, Idiano & Gastaldi, Massimo & Rosa, Paolo, 2020. "Recycling of end-of-life vehicles: Assessing trends and performances in Europe," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    5. Cruz-Rivera, Reynaldo & Ertel, Jürgen, 2009. "Reverse logistics network design for the collection of End-of-Life Vehicles in Mexico," European Journal of Operational Research, Elsevier, vol. 196(3), pages 930-939, August.
    6. Marian R. Chertow, 2007. "“Uncovering” Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 11-30, January.
    7. John Ehrenfeld & Nicholas Gertler, 1997. "Industrial Ecology in Practice: The Evolution of Interdependence at Kalundborg," Journal of Industrial Ecology, Yale University, vol. 1(1), pages 67-79, January.
    8. Yang Li & Kiyoshi Fujikawa & Junbo Wang & Xin Li & Yiyi Ju & Chenyi Chen, 2020. "The Potential and Trend of End-Of-Life Passenger Vehicles Recycling in China," Sustainability, MDPI, vol. 12(4), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philip Krummeck & Yagmur Damla Dokur & Daniel Braun & Steffen Kiemel & Robert Miehe, 2022. "Designing Component Interfaces for the Circular Economy—A Case Study for Product-As-A-Service Business Models in the Automotive Industry," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    2. Zambri Harun & Altaf Hossain Molla & Mohd Radzi Abu Mansor & Rozmi Ismail, 2022. "Development, Critical Evaluation, and Proposed Framework: End-of-Life Vehicle Recycling in India," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    3. Quan Wu & Wei Cheng & Zuoxiong Zheng & Guangjun Zhang & Haicheng Xiao & Chuan Wen, 2023. "Research on the Carbon Credit Exchange Strategy for Scrap Vehicles Based on Evolutionary Game Theory," IJERPH, MDPI, vol. 20(3), pages 1-18, February.
    4. Zhang Yu & Syed Abdul Rehman Khan & Hafiz Muhammad Zia-ul-haq & Muhammad Tanveer & Muhammad Jawad Sajid & Shehzad Ahmed, 2022. "A Bibliometric Analysis of End-of-Life Vehicles Related Research: Exploring a Path to Environmental Sustainability," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    5. Altaf Hossain Molla & Hilal Shams & Zambri Harun & Mohd Nizam Ab Rahman & Hawa Hishamuddin, 2022. "An Assessment of Drivers and Barriers to Implementation of Circular Economy in the End-of-Life Vehicle Recycling Sector in India," Sustainability, MDPI, vol. 14(20), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shimaa Al-Quradaghi & Qipeng P. Zheng & Ali Elkamel, 2020. "Generalized Framework for the Design of Eco-Industrial Parks: Case Study of End-of-Life Vehicles," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    2. Tian Yang & Changhao Liu & Raymond P. Côté & Jinwen Ye & Weifeng Liu, 2022. "Evaluating the Barriers to Industrial Symbiosis Using a Group AHP-TOPSIS Model," Sustainability, MDPI, vol. 14(11), pages 1-30, June.
    3. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.
    4. Taskhiri, Mohammad Sadegh & Tan, Raymond R. & Chiu, Anthony S.F., 2011. "Emergy-based fuzzy optimization approach for water reuse in an eco-industrial park," Resources, Conservation & Recycling, Elsevier, vol. 55(7), pages 730-737.
    5. Emilia Faria & Cristiane Barreto & Armando Caldeira-Pires & Jorge Alfredo Cerqueira Streit & Patricia Guarnieri, 2023. "Brazilian Circular Economy Pilot Project: Integrating Local Stakeholders’ Perception and Social Context in Industrial Symbiosis Analyses," Sustainability, MDPI, vol. 15(4), pages 1-28, February.
    6. Rachelle LeBlanc & Carole Tranchant & Yves Gagnon & Raymond Côté, 2016. "Potential for Eco-Industrial Park Development in Moncton, New Brunswick (Canada): A Comparative Analysis," Sustainability, MDPI, vol. 8(5), pages 1-18, May.
    7. Miguel A. Artacho-Ramírez & Bélgica Pacheco-Blanco & Víctor A. Cloquell-Ballester & Mónica Vicent & Irina Celades, 2020. "Quick Wins Workshop and Companies Profiling to Analyze Industrial Symbiosis Potential. Valenciaport’s Cluster as Case Study," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    8. Emilia Faria & Armando Caldeira-Pires & Cristiane Barreto, 2021. "Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
    9. Siarhei Manzhynski & Frank Figge, 2020. "Coopetition for sustainability: Between organizational benefit and societal good," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 827-837, March.
    10. Yuxi Dai & Steven Day & Donato Masi & Ismail Gölgeci, 2022. "A synthesised framework of eco‐industrial park transformation and stakeholder interaction," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3122-3151, November.
    11. Vuk Petronijević & Aleksandar Đorđević & Miladin Stefanović & Slavko Arsovski & Zdravko Krivokapić & Milan Mišić, 2020. "Energy Recovery through End-of-Life Vehicles Recycling in Developing Countries," Sustainability, MDPI, vol. 12(21), pages 1-26, October.
    12. Sukrit Vinayavekhin & Feng Li & Aneesh Banerjee & Andrea Caputo, 2023. "The academic landscape of sustainability in management literature: Towards a more interdisciplinary research agenda," Business Strategy and the Environment, Wiley Blackwell, vol. 32(8), pages 5748-5784, December.
    13. Anna Lütje & Volker Wohlgemuth, 2020. "Tracking Sustainability Targets with Quantitative Indicator Systems for Performance Measurement of Industrial Symbiosis in Industrial Parks," Administrative Sciences, MDPI, vol. 10(1), pages 1-15, January.
    14. Lucija Ažman Momirski & Barbara Mušič & Boštjan Cotič, 2021. "Urban Strategies Enabling Industrial and Urban Symbiosis: The Case of Slovenia," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
    15. Nadia Akhtar & Syed Atif Bokhari & Michael Alan Martin & Zafeer Saqib & Muhammad Irfan Khan & Arif Mahmud & Muhammad Zaman-ul-Haq & Sarah Amir, 2022. "Uncovering Barriers for Industrial Symbiosis: Assessing Prospects for Eco-Industrialization through Small and Medium-Sized Enterprises in Developing Regions," Sustainability, MDPI, vol. 14(11), pages 1-21, June.
    16. Sun, Lu & Fujii, Minoru & Li, Zhaoling & Dong, Huijuan & Geng, Yong & Liu, Zhe & Fujita, Tsuyoshi & Yu, Xiaoman & Zhang, Yuepeng, 2020. "Energy-saving and carbon emission reduction effect of urban-industrial symbiosis implementation with feasibility analysis in the city," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    17. Katalin Lipták & Andrea S. Gubik & Ágnes Horváth & Mónika Kis-Orloczki, 2021. "The waste management sector of Hungary," Theory Methodology Practice (TMP), Faculty of Economics, University of Miskolc, vol. 17(01), pages 31-42.
    18. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    19. Zhiguo Wang & Lufei Huang & Cici Xiao He, 2021. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 785-812, November.
    20. Colton Brehm & Astrid Layton, 2021. "Nestedness of eco‐industrial networks: Exploring linkage distribution to promote sustainable industrial growth," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 205-218, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3551-:d:773817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.