IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2903-d762409.html
   My bibliography  Save this article

Cryosphere Microbiome Biobanks for Mountain Glaciers in China

Author

Listed:
  • Anzhou Ma

    (Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Jiejie Zhang

    (Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101400, China
    Sino-Danish Center for Education and Research, Beijing 101400, China
    These authors contributed equally to this work.)

  • Guohua Liu

    (Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xuliang Zhuang

    (Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Guoqiang Zhuang

    (Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

The glaciers in China have an important role as one of the most climate-sensitive constituents of the Tibetan Plateau which is known as the Asian Water Tower. Although the cryosphere is one of the most extreme environments for organisms, the soils of the glacier foreland harbor surprisingly rich microbiomes. A large amount of accelerated glacier retreat accompanied by global warming will not only raise the sea level, but it will also lead to the massive release of a considerable amount of carbon stored in these glaciers. The responses of glacier microbiomes could alter the biogeochemical cycle of carbon and have a complex impact on climate change. Thus, understanding present-day and future glacier microbiome changes is crucial to assess the feedback on climate change and the impacts on ecosystems. To this end, we discuss here the diversity and biogeochemical functions of the microbiomes in Chinese mountain glacier ecosystems.

Suggested Citation

  • Anzhou Ma & Jiejie Zhang & Guohua Liu & Xuliang Zhuang & Guoqiang Zhuang, 2022. "Cryosphere Microbiome Biobanks for Mountain Glaciers in China," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2903-:d:762409
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2903/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2903/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brent C. Christner & John C. Priscu & Amanda M. Achberger & Carlo Barbante & Sasha P. Carter & Knut Christianson & Alexander B. Michaud & Jill A. Mikucki & Andrew C. Mitchell & Mark L. Skidmore & Tris, 2014. "A microbial ecosystem beneath the West Antarctic ice sheet," Nature, Nature, vol. 512(7514), pages 310-313, August.
    2. M. Zemp & M. Huss & E. Thibert & N. Eckert & R. McNabb & J. Huber & M. Barandun & H. Machguth & S. U. Nussbaumer & I. Gärtner-Roer & L. Thomson & F. Paul & F. Maussion & S. Kutuzov & J. G. Cogley, 2019. "Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016," Nature, Nature, vol. 568(7752), pages 382-386, April.
    3. Rachel Mackelprang & Mark P. Waldrop & Kristen M. DeAngelis & Maude M. David & Krystle L. Chavarria & Steven J. Blazewicz & Edward M. Rubin & Janet K. Jansson, 2011. "Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw," Nature, Nature, vol. 480(7377), pages 368-371, December.
    4. T. W. Crowther & K. E. O. Todd-Brown & C. W. Rowe & W. R. Wieder & J. C. Carey & M. B. Machmuller & B. L. Snoek & S. Fang & G. Zhou & S. D. Allison & J. M. Blair & S. D. Bridgham & A. J. Burton & Y. C, 2016. "Quantifying global soil carbon losses in response to warming," Nature, Nature, vol. 540(7631), pages 104-108, December.
    5. Brent C. Christner & John C. Priscu & Amanda M. Achberger & Carlo Barbante & Sasha P. Carter & Knut Christianson & Alexander B. Michaud & Jill A. Mikucki & Andrew C. Mitchell & Mark L. Skidmore & Tris, 2014. "Correction: Corrigendum: A microbial ecosystem beneath the West Antarctic ice sheet," Nature, Nature, vol. 514(7522), pages 394-394, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucas Serra Moncadas & Cyrill Hofer & Paul-Adrian Bulzu & Jakob Pernthaler & Adrian-Stefan Andrei, 2024. "Freshwater genome-reduced bacteria exhibit pervasive episodes of adaptive stasis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Kyung Mo Kim & Kyuin Hwang & Hanbyul Lee & Ahnna Cho & Christina L. Davis & Brent C. Christner & John C. Priscu & Ok-Sun Kim, 2025. "Genetic isolation and metabolic complexity of an Antarctic subglacial microbiome," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    3. Victor Parro & María Ángeles Lezcano & Mercedes Moreno-Paz & Alfonso F. Davila & Armando Azua-Bustos & Miriam García-Villadangos & Jacek Wierzchos & Miguel Ángel Fernández-Martínez & Ramón Larramendi , 2025. "Microbial biogeography along a 2578 km transect on the East Antarctic Plateau," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    4. Gavin Piccione & Terrence Blackburn & Slawek Tulaczyk & E. Troy Rasbury & Mathis P. Hain & Daniel E. Ibarra & Katharina Methner & Chloe Tinglof & Brandon Cheney & Paul Northrup & Kathy Licht, 2022. "Subglacial precipitates record Antarctic ice sheet response to late Pleistocene millennial climate cycles," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Iain P. Hartley & Tim C. Hill & Sarah E. Chadburn & Gustaf Hugelius, 2021. "Temperature effects on carbon storage are controlled by soil stabilisation capacities," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    6. Antonella Fatica & Alessio Manzo & Erika Di Iorio & Luana Circelli & Francesco Fantuz & Luca Todini & Thomas W. Crawford & Claudio Colombo & Elisabetta Salimei, 2025. "Apennine Natural Pasture Areas: Soil, Plant, and Livestock Interactions and Ecosystem Characterization," Sustainability, MDPI, vol. 17(12), pages 1-19, June.
    7. Kai Yin & Sudong Xu & Quan Zhao & Nini Zhang & Mengqi Li, 2021. "Effects of sea surface warming and sea-level rise on tropical cyclone and inundation modeling at Shanghai coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 755-784, October.
    8. Albin Wells & Brandon S. Tober & Sarah F. Child & David R. Rounce & Michael G. Loso & Chad P. Hults & Martin Truffer & John W. Holt & Michael S. Christoffersen, 2025. "An 85-year record of glacier change and refined projections for Kennicott and Root Glaciers, Alaska," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    9. Qiang Li & Maofang Gao & Zhao-Liang Li, 2022. "Soil Organic Carbon Storage in Australian Wheat Cropping Systems in Response to Climate Change from 1990 to 2060," Land, MDPI, vol. 11(10), pages 1-15, September.
    10. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Meyer, Rachelle S. & Cullen, Brendan R. & Whetton, Penny H. & Robertson, Fiona A. & Eckard, Richard J., 2018. "Potential impacts of climate change on soil organic carbon and productivity in pastures of south eastern Australia," Agricultural Systems, Elsevier, vol. 167(C), pages 34-46.
    12. Daniel H Huson & Sina Beier & Isabell Flade & Anna Górska & Mohamed El-Hadidi & Suparna Mitra & Hans-Joachim Ruscheweyh & Rewati Tappu, 2016. "MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-12, June.
    13. Piao Zhou & Lin Zhang & Shi Qi, 2022. "Plant Diversity and Aboveground Biomass Interact with Abiotic Factors to Drive Soil Organic Carbon in Beijing Mountainous Areas," Sustainability, MDPI, vol. 14(17), pages 1-12, August.
    14. Xiaoxiao Li & Qi Zhang & Jing Ma & Yongjun Yang & Yifei Wang & Chen Fu, 2020. "Flooding Irrigation Weakens the Molecular Ecological Network Complexity of Soil Microbes during the Process of Dryland-to-Paddy Conversion," IJERPH, MDPI, vol. 17(2), pages 1-19, January.
    15. M. E. Marushchak & J. Kerttula & K. Diáková & A. Faguet & J. Gil & G. Grosse & C. Knoblauch & N. Lashchinskiy & P. J. Martikainen & A. Morgenstern & M. Nykamb & J. G. Ronkainen & H. M. P. Siljanen & L, 2021. "Thawing Yedoma permafrost is a neglected nitrous oxide source," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    16. Taigang Zhang & Weicai Wang & Baosheng An & Lele Wei, 2023. "Enhanced glacial lake activity threatens numerous communities and infrastructure in the Third Pole," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Ang Hu & Kyoung-Soon Jang & Andrew J. Tanentzap & Wenqian Zhao & Jay T. Lennon & Jinfu Liu & Mingjia Li & James Stegen & Mira Choi & Yahai Lu & Xiaojuan Feng & Jianjun Wang, 2024. "Thermal responses of dissolved organic matter under global change," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Kailiang Yu & Lei He & Shuli Niu & Jinsong Wang & Pablo Garcia-palacios & Marina Dacal & Colin Averill & Katerina Georgiou & Jian-sheng Ye & Fei Mo & Lu Yang & Thomas W. Crowther, 2025. "Nonlinear microbial thermal response and its implications for abrupt soil organic carbon responses to warming," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    19. Elke Kellner, 2019. "Social Acceptance of a Multi-Purpose Reservoir in a Recently Deglaciated Landscape in the Swiss Alps," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    20. Vikram S. Negi & Deep C. Tiwari & Laxman Singh & Shinny Thakur & Indra D. Bhatt, 2022. "Review and synthesis of climate change studies in the Himalayan region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10471-10502, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2903-:d:762409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.