IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i12p2227-d996061.html
   My bibliography  Save this article

Multi-Temporal Analysis of Past and Future Land-Cover Changes of the Third Pole

Author

Listed:
  • Munkhnasan Lamchin

    (OJEong Resilience Institute (OJERI), Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
    Department of Environment and Forest Engineering, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar City 14201, Mongolia
    Institute for Sustainable Development, National University of Mongolia, Ulaanbaatar City 14201, Mongolia)

  • Woo-Kyun Lee

    (Department of Environmental Science and Ecological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea)

  • Sonam Wangyel Wang

    (OJEong Resilience Institute (OJERI), Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea)

Abstract

In the past few decades, both natural and human influences have contributed to the unpredictable rates of land use and land-cover change (LUCC) in glacially devastated places. Monitoring and identifying the geographic and temporal land-cover changes and driving forces in this unique type of area may help to give the scientific basis needed to understand the effects of climate change and human activities on LUCC. The Third Pole is one such landscape that provides inevitable key ecosystem services to over 2 billion people in Asia. However, this important landscape is increasingly being threatened by the impacts of climate change. Policy and program responses to the Third Pole’s mounting socioeconomic challenges are inadequate and lack scientific evidence. Using the land-change model (LCM) and historical data from 1992 onwards, our study attempted to (i) detect the spatial patterns of land use and land-cover changes in the Third Pole from 1992 to 2020; and (ii) project them into 2060. Our analysis shows that the land use and land-cover types in the Third pole are undergoing changes. About 0.07% of the snow and ice have melted in the last three decades, indicating global warming. This melt has resulted in increasing water bodies (0.08%), especially as glacial lakes. This has significantly increased the risk of glacial outburst floods. Other key alpine land-cover types that decreased are bare land (0.6%) and agricultural land (0.05%). These land types represent important habitats for wild flora and fauna, grazing land for livestock, and food for nomads, and their loss will directly degrade ecological services and the health and wellbeing of the nomads. Land cover of forest, shrubs, and scanty vegetation have all increased by 0.3%, 0.02%, and 0.77%, respectively, inducing socio-ecological changes in the Third pole mountains. Further predication analysis showed that snow and ice, along with bare land, will continue to recede whereas forest, grassland, water bodies, shrubland, sparse vegetation, and settlement will increase. These results indicate the increasing impact of global warming that will continue to change the Third Pole. These changes have serious implications for designing adaptation and mitigation interventions in the mountains. We recommend more detailed research to investigate the underlying factors that are changing the Third Pole to develop policy and programs to help humans, livestock, and biodiversity adapt to the changes in these remote and harsh mountains. This will also help to mitigate the effects on downstream communities.

Suggested Citation

  • Munkhnasan Lamchin & Woo-Kyun Lee & Sonam Wangyel Wang, 2022. "Multi-Temporal Analysis of Past and Future Land-Cover Changes of the Third Pole," Land, MDPI, vol. 11(12), pages 1-19, December.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2227-:d:996061
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/12/2227/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/12/2227/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guoxiong Zheng & Simon Keith Allen & Anming Bao & Juan Antonio Ballesteros-Cánovas & Matthias Huss & Guoqing Zhang & Junli Li & Ye Yuan & Liangliang Jiang & Tao Yu & Wenfeng Chen & Markus Stoffel, 2021. "Increasing risk of glacial lake outburst floods from future Third Pole deglaciation," Nature Climate Change, Nature, vol. 11(5), pages 411-417, May.
    2. Libin Yan & Zhengyu Liu & Guangshan Chen & J. E. Kutzbach & Xiaodong Liu, 2016. "Mechanisms of elevation-dependent warming over the Tibetan plateau in quadrupled CO2 experiments," Climatic Change, Springer, vol. 135(3), pages 509-519, April.
    3. M. Zemp & M. Huss & E. Thibert & N. Eckert & R. McNabb & J. Huber & M. Barandun & H. Machguth & S. U. Nussbaumer & I. Gärtner-Roer & L. Thomson & F. Paul & F. Maussion & S. Kutuzov & J. G. Cogley, 2019. "Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016," Nature, Nature, vol. 568(7752), pages 382-386, April.
    4. Jane Qiu, 2008. "China: The third pole," Nature, Nature, vol. 454(7203), pages 393-396, July.
    5. Kun Yang & Hui Lu & Siyu Yue & Guoqing Zhang & Yanbin Lei & Zhu La & Wei Wang, 2018. "Quantifying recent precipitation change and predicting lake expansion in the Inner Tibetan Plateau," Climatic Change, Springer, vol. 147(1), pages 149-163, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Yin & Sudong Xu & Quan Zhao & Nini Zhang & Mengqi Li, 2021. "Effects of sea surface warming and sea-level rise on tropical cyclone and inundation modeling at Shanghai coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 755-784, October.
    2. Yali Zhong & Shuqing Chen & Haihua Mo & Weiwen Wang & Pengfei Yu & Xuemei Wang & Nima Chuduo & Bian Ba, 2022. "Contribution of urban expansion to surface warming in high-altitude cities of the Tibetan Plateau," Climatic Change, Springer, vol. 175(1), pages 1-22, November.
    3. Caroline Taylor & Tom R. Robinson & Stuart Dunning & J. Rachel Carr & Matthew Westoby, 2023. "Glacial lake outburst floods threaten millions globally," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Muhammad Arfan & Jewell Lund & Daniyal Hassan & Maaz Saleem & Aftab Ahmad, 2019. "Assessment of Spatial and Temporal Flow Variability of the Indus River," Resources, MDPI, vol. 8(2), pages 1-17, May.
    5. Qianhan Wu & Kai Liu & Chunqiao Song & Jida Wang & Linghong Ke & Ronghua Ma & Wensong Zhang & Hang Pan & Xinyuan Deng, 2018. "Remote Sensing Detection of Vegetation and Landform Damages by Coal Mining on the Tibetan Plateau," Sustainability, MDPI, vol. 10(11), pages 1-17, October.
    6. Xinjun He & Anyi Huang & Jianzhong Yan & Hong Zhou & Ya Wu & Liang Emlyn Yang & Basanta Paudel, 2023. "Smallholders’ climate change adaptation strategies on the eastern Tibetan Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 641-667, August.
    7. Wang, Weijun & Zhao, Xueyan & Cao, Jianjun & Li, Hua & Zhang, Qin, 2020. "Barriers and requirements to climate change adaptation of mountainous rural communities in developing countries: The case of the eastern Qinghai-Tibetan Plateau of China," Land Use Policy, Elsevier, vol. 95(C).
    8. Dongchuan Wang & Kangjian Wang & Zhiheng Wang & Hongkui Fan & Hua Chai & Hongyi Wang & Hui Long & Jianshe Gao & Jiacheng Xu, 2022. "Spatial-Temporal Evolution and Influencing Mechanism of Traffic Dominance in Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 14(17), pages 1-19, September.
    9. Yanjun Che & Shijin Wang & Yanqiang Wei & Tao Pu & Xinggang Ma, 2022. "Rapid changes to glaciers increased the outburst flood risk in Guangxieco Proglacial Lake in the Kangri Karpo Mountains, Southeast Qinghai-Tibetan Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2163-2184, February.
    10. Haidong Li & Yingkui Li & Yuanyun Gao & Changxin Zou & Shouguang Yan & Jixi Gao, 2016. "Human Impact on Vegetation Dynamics around Lhasa, Southern Tibetan Plateau, China," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    11. Zhenjie Dong & Lin Hou & Qi Ruan, 2023. "Effect of Elevation Gradient on Carbon Pools in a Juniperus przewalskii Kom. Forest in Qinghai, China," Sustainability, MDPI, vol. 15(7), pages 1-13, April.
    12. Bo Zhang & Wei Zhou, 2021. "Spatial–Temporal Characteristics of Precipitation and Its Relationship with Land Use/Cover Change on the Qinghai-Tibet Plateau, China," Land, MDPI, vol. 10(3), pages 1-21, March.
    13. Junko Mochizuki & ZhongXiang Zhang, 2011. "Environmental Security and its Implications for China’s Foreign Relations," Working Papers 2011.30, Fondazione Eni Enrico Mattei.
    14. Xingchuan Gao & Tao Li & Xiaoshu Cao, 2019. "Spatial Fairness and Changes in Transport Infrastructure in the Qinghai-Tibet Plateau Area from 1976 to 2016," Sustainability, MDPI, vol. 11(3), pages 1-16, January.
    15. Haorui Zhang & Shaowei Li & Guangyu Zhang & Gang Fu, 2020. "Response of Soil Microbial Communities to Warming and Clipping in Alpine Meadows in Northern Tibet," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    16. William Kochtitzky & Luke Copland & Wesley Wychen & Romain Hugonnet & Regine Hock & Julian A. Dowdeswell & Toby Benham & Tazio Strozzi & Andrey Glazovsky & Ivan Lavrentiev & David R. Rounce & Romain M, 2022. "The unquantified mass loss of Northern Hemisphere marine-terminating glaciers from 2000–2020," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. William N. Rom, 2023. "Annals of Education: Teaching Climate Change and Global Public Health," IJERPH, MDPI, vol. 21(1), pages 1-16, December.
    18. Yuhao Jiang & Baolin Li & Yecheng Yuan & Qingling Sun & Tao Zhang & Yan Liu & Ying Li & Rui Li & Fei Li, 2021. "Trends in Flowering Phenology of Herbaceous Plants and Its Response to Precipitation and Snow Cover on the Qinghai—Tibetan Plateau from 1983 to 2017," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    19. Taigang Zhang & Weicai Wang & Baosheng An & Lele Wei, 2023. "Enhanced glacial lake activity threatens numerous communities and infrastructure in the Third Pole," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Nansha Sun & Qiong Chen & Fenggui Liu & Qiang Zhou & Wenxin He & Yuanyuan Guo, 2023. "Land Use Simulation and Landscape Ecological Risk Assessment on the Qinghai-Tibet Plateau," Land, MDPI, vol. 12(4), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2227-:d:996061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.