IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i4p2016-d746309.html
   My bibliography  Save this article

Case Study of Using the Geothermal Potential of Mine Water for Central District Heating—The Rožná Deposit, Czech Republic

Author

Listed:
  • Michal Vokurka

    (Department of Mining Engineering and Safety, VSB—Technical University of Ostrava, 708 00 Ostrava, Czech Republic)

  • Antonín Kunz

    (Department of Geological Engineering, VSB—Technical University of Ostrava, 708 00 Ostrava, Czech Republic)

Abstract

This paper analyzes the possibility of using the thermal energy of discharged environmentally friendly mine water for the heat supply of a selected locality. There are few cases of industrial use of geothermal water in the Czech Republic, but mine water has never been the source. Based on this fact, an analysis of the usability of mine water at the Rožná I Mine was carried out. The analysis showed that the energy output of this pumped water was sufficient for the selected location of the municipality of Dolní Rožínka, where long-term annual average consumptions are at a level of 4350 GJ. The theoretical maximum output of this source is calculated as 837.4 kW; therefore, it exceeds the output required to satisfy the energy needs of this location several times over. Based on this input information, a technical and economic model of the heating system installation project was developed with three options. The case study aimed to find and propose an optimal alternative solution to replace the current unsatisfactory state of heat supply in the village of Dolní Rožínka. In the final part of this paper, the most optimal option is identified by a comparative method, which replaces the existing central district heating based on the production of heat energy from natural gas, i.e., fossil fuels. This study was motivated by a strategy to replace fossil energy sources with renewable energy sources wherever conditions are suitable.

Suggested Citation

  • Michal Vokurka & Antonín Kunz, 2022. "Case Study of Using the Geothermal Potential of Mine Water for Central District Heating—The Rožná Deposit, Czech Republic," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2016-:d:746309
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/4/2016/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/4/2016/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessandro Franco & Maurizio Vaccaro, 2020. "Sustainable Sizing of Geothermal Power Plants: Appropriate Potential Assessment Methods," Sustainability, MDPI, vol. 12(9), pages 1-19, May.
    2. Menéndez, Javier & Ordónez, Almudena & Fernández-Oro, Jesús M. & Loredo, Jorge & Díaz-Aguado, María B., 2020. "Feasibility analysis of using mine water from abandoned coal mines in Spain for heating and cooling of buildings," Renewable Energy, Elsevier, vol. 146(C), pages 1166-1176.
    3. Sangyong Kim & Young Jun Jang & Yoonseok Shin & Gwang-Hee Kim, 2014. "Economic Feasibility Analysis of the Application of Geothermal Energy Facilities to Public Building Structures," Sustainability, MDPI, vol. 6(4), pages 1-19, March.
    4. Hall, Andrew & Scott, John Ashley & Shang, Helen, 2011. "Geothermal energy recovery from underground mines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 916-924, February.
    5. Bujok, Petr & Grycz, David & Klempa, Martin & Kunz, Antonín & Porzer, Michal & Pytlik, Adam & Rozehnal, Zdeněk & Vojčinák, Petr, 2014. "Assessment of the influence of shortening the duration of TRT (thermal response test) on the precision of measured values," Energy, Elsevier, vol. 64(C), pages 120-129.
    6. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    7. Joanna Boguniewicz-Zabłocka & Ewelina Łukasiewicz & Domenico Guida, 2019. "Analysis of the Sustainable Use of Geothermal Waters and Future Development Possibilities—A Case Study from the Opole Region, Poland," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    8. Farooq Sher & Oliver Curnick & Mohammad Tazli Azizan, 2021. "Sustainable Conversion of Renewable Energy Sources," Sustainability, MDPI, vol. 13(5), pages 1-4, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vijayaraja Loganathan & Dhanasekar Ravikumar & Rupa Kesavan & Kanakasri Venkatesan & Raadha Saminathan & Raju Kannadasan & Mahalingam Sudhakaran & Mohammed H. Alsharif & Zong Woo Geem & Junhee Hong, 2022. "A Case Study on Renewable Energy Sources, Power Demand, and Policies in the States of South India—Development of a Thermoelectric Model," Sustainability, MDPI, vol. 14(14), pages 1-29, July.
    2. Carlos Lorente Rubio & Jorge Luis García-Alcaraz & Juan Carlos Sáenz-Diez Muro & Eduardo Martínez-Cámara & Agostino Bruzzone & Julio Blanco-Fernández, 2022. "Environmental Impact Comparison of Geothermal Alternatives for Conventional Boiler Replacement," Energies, MDPI, vol. 15(21), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro García-Gil & Miguel Mejías Moreno & Eduardo Garrido Schneider & Miguel Ángel Marazuela & Corinna Abesser & Jesús Mateo Lázaro & José Ángel Sánchez Navarro, 2020. "Nested Shallow Geothermal Systems," Sustainability, MDPI, vol. 12(12), pages 1-13, June.
    2. Liu, Zijian & Lu, Ding & Tao, Shen & Chen, Rundong & Gong, Maoqiong, 2024. "Experimental study on using 85 °C low-grade heat to generate <120 °C steam by a temperature-distributed absorption heat transformer," Energy, Elsevier, vol. 299(C).
    3. Mikhail Tokarev, 2019. "A Double-Bed Adsorptive Heat Transformer for Upgrading Ambient Heat: Design and First Tests," Energies, MDPI, vol. 12(21), pages 1-14, October.
    4. Chi, Fang'ai & Xu, Liming & Peng, Changhai, 2020. "Integration of completely passive cooling and heating systems with daylighting function into courtyard building towards energy saving," Applied Energy, Elsevier, vol. 266(C).
    5. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    6. Chao Huan & Sha Zhang & Xiaoxuan Zhao & Shengteng Li & Bo Zhang & Yujiao Zhao & Pengfei Tao, 2021. "Thermal Performance of Cemented Paste Backfill Body Considering Its Slurry Sedimentary Characteristics in Underground Backfill Stopes," Energies, MDPI, vol. 14(21), pages 1-18, November.
    7. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    8. Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
    9. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    10. Fumey, Benjamin & Weber, Robert & Baldini, Luca, 2023. "Heat transfer constraints and performance mapping of a closed liquid sorption heat storage process," Applied Energy, Elsevier, vol. 335(C).
    11. Choi, Yosoon & Song, Jinyoung, 2017. "Review of photovoltaic and wind power systems utilized in the mining industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1386-1391.
    12. Ahmed Rezk & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Hasan Demir & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Mohammad Ali Abdelkareem, 2022. "Experimental Study on Utilizing Silica Gel with Ethanol and Water for Adsorption Heat Storage," Energies, MDPI, vol. 16(1), pages 1-15, December.
    13. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of disturbance on thermal response test, part 1: Development of disturbance analytical model, parametric study, and sensitivity analysis," Renewable Energy, Elsevier, vol. 85(C), pages 306-318.
    14. Erika Buday-Bódi & Ali Irfan & Richard William McIntosh & Zsolt Zoltán Fehér & József Csajbók & Csaba Juhász & László Radócz & Arnold Szilágyi & Tamás Buday, 2022. "Subregion-Scale Geothermal Delineation Based on Image Analysis Using Reflection Seismology and Well Data with an Outlook for Land Use," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    15. Maija A. Benitz & Li-Ling Yang, 2021. "Bridging Education and Engineering Students through a Wind Energy-Focused Community Engagement Project," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    16. Pasquier, Philippe, 2018. "Interpretation of the first hours of a thermal response test using the time derivative of the temperature," Applied Energy, Elsevier, vol. 213(C), pages 56-75.
    17. Liu, Guokun & Ji, Dongxu & Qin, Yanzhou, 2023. "Geothermal-solar energy system integrated with hydrogen production and utilization modules for power supply-demand balancing," Energy, Elsevier, vol. 283(C).
    18. Bao, Ting & Liu, Zhen (Leo), 2019. "Thermohaline stratification modeling in mine water via double-diffusive convection for geothermal energy recovery from flooded mines," Applied Energy, Elsevier, vol. 237(C), pages 566-580.
    19. Gbenou, Tadagbe Roger Sylvanus & Fopah-Lele, Armand & Wang, Kejian, 2022. "Macroscopic and microscopic investigations of low-temperature thermochemical heat storage reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Yıldız, Çağatay & Seçilmiş, Mustafa & Arıcı, Müslüm & Mert, Mehmet Selçuk & Nižetić, Sandro & Karabay, Hasan, 2023. "An experimental study on a solar-assisted heat pump incorporated with PCM based thermal energy storage unit," Energy, Elsevier, vol. 278(PB).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2016-:d:746309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.