IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1221-d730304.html
   My bibliography  Save this article

A Conceptual Definition and Future Directions of Urban Smart Factory for Sustainable Manufacturing

Author

Listed:
  • Seyed Mohammad Mehdi Sajadieh

    (Department of Industrial Engineering, Sungkyunkwan University, Suwon-si 16419, Korea)

  • Yoo Ho Son

    (Department of Industrial Engineering, Sungkyunkwan University, Suwon-si 16419, Korea)

  • Sang Do Noh

    (Department of Industrial Engineering, Sungkyunkwan University, Suwon-si 16419, Korea)

Abstract

Today, megatrends such as individualization, climate change, emissions, energy, and resource scarcity, urbanization, and human well-being, impact almost every aspect of people’s lives. Transformative impacts on many sectors are inevitable, and manufacturing is not an exception. Many studies have investigated solutions that focus on diverse directions, with urban production being the focus of many research efforts and recent studies concentrating on Industry 4.0 and smart manufacturing technologies. This study investigated the integration of smart factory technologies with urban manufacturing as a solution for the aforementioned megatrends. A literature review on related fields, mass personalization, sustainable manufacturing, urban factory, and smart factory was conducted to analyze the benefits, challenges, and correlations. In addition, applications of smart factory technologies in urban production with several case studies are summarized from the literature review. The integration of smart factory technologies and urban manufacturing is proposed as the urban smart factory which has three major characteristics, human-centric, sustainable, and resilient. To the best of the author’s knowledge, no such definition has been proposed before. Practitioners could use the conceptual definition of an urban smart factory presented in this study as a reference model for enhancement of urban production while academics could benefit from the mentioned future research directions.

Suggested Citation

  • Seyed Mohammad Mehdi Sajadieh & Yoo Ho Son & Sang Do Noh, 2022. "A Conceptual Definition and Future Directions of Urban Smart Factory for Sustainable Manufacturing," Sustainability, MDPI, vol. 14(3), pages 1-22, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1221-:d:730304
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1221/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1221/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li Da Xu & Eric L. Xu & Ling Li, 2018. "Industry 4.0: state of the art and future trends," International Journal of Production Research, Taylor & Francis Journals, vol. 56(8), pages 2941-2962, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sony, Michael & Naik, Subhash, 2020. "Industry 4.0 integration with socio-technical systems theory: A systematic review and proposed theoretical model," Technology in Society, Elsevier, vol. 61(C).
    2. Ghadimi, Pezhman & Donnelly, Oisin & Sar, Kubra & Wang, Chao & Azadnia, Amir Hossein, 2022. "The successful implementation of industry 4.0 in manufacturing: An analysis and prioritization of risks in Irish industry," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    3. Tandon, Anushree & Kaur, Puneet & Mäntymäki, Matti & Dhir, Amandeep, 2021. "Blockchain applications in management: A bibliometric analysis and literature review," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    4. Zhou, Honggeng & Li, Ling, 2020. "The impact of supply chain practices and quality management on firm performance: Evidence from China's small and medium manufacturing enterprises," International Journal of Production Economics, Elsevier, vol. 230(C).
    5. Özköse, Hakan & Güney, Gül, 2023. "The effects of industry 4.0 on productivity: A scientific mapping study," Technology in Society, Elsevier, vol. 75(C).
    6. Bai, Chunguang & Dallasega, Patrick & Orzes, Guido & Sarkis, Joseph, 2020. "Industry 4.0 technologies assessment: A sustainability perspective," International Journal of Production Economics, Elsevier, vol. 229(C).
    7. Sundarakani, Balan & Ajaykumar, Aneesh & Gunasekaran, Angappa, 2021. "Big data driven supply chain design and applications for blockchain: An action research using case study approach," Omega, Elsevier, vol. 102(C).
    8. Gupta, Shivam & Justy, Théo & Kamboj, Shampy & Kumar, Ajay & Kristoffersen, Eivind, 2021. "Big data and firm marketing performance: Findings from knowledge-based view," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    9. Shang, Juan & Li, Pengfei & Li, Ling & Chen, Yong, 2018. "The relationship between population growth and capital allocation in urbanization," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 249-256.
    10. Rafael, Lizarralde Dorronsoro & Jaione, Ganzarain Epelde & Cristina, López & Ibon, Serrano Lasa, 2020. "An Industry 4.0 maturity model for machine tool companies," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    11. Zhu, Jianhua & Sun, Yanming, 2020. "Dynamic modeling and chaos control of sustainable integration of informatization and industrialization," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    12. King, Elizabeth M. & Randolph, Hannah L. & Floro, Maria S. & Suh, Jooyeoun, 2021. "Demographic, health, and economic transitions and the future care burden," World Development, Elsevier, vol. 140(C).
    13. Mujahid Ghouri, Arsalan & Mani, Venkatesh & Jiao, Zhilun & Venkatesh, V.G. & Shi, Yangyan & Kamble, Sachin S., 2021. "An empirical study of real-time information-receiving using industry 4.0 technologies in downstream operations," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    14. Gillani, Fatima & Chatha, Kamran Ali & Sadiq Jajja, Muhammad Shakeel & Farooq, Sami, 2020. "Implementation of digital manufacturing technologies: Antecedents and consequences," International Journal of Production Economics, Elsevier, vol. 229(C).
    15. Palacios-Marqués, Daniel & Gallego-Nicholls, José Fernando & Guijarro-García, María, 2021. "A recipe for success: Crowdsourcing, online social networks, and their impact on organizational performance," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    16. Culot, Giovanna & Nassimbeni, Guido & Orzes, Guido & Sartor, Marco, 2020. "Behind the definition of Industry 4.0: Analysis and open questions," International Journal of Production Economics, Elsevier, vol. 226(C).
    17. Leonilde Varela & Paulo Ávila & Hélio Castro & Goran D. Putnik & Luís Miguel Ciravegna Fonseca & Luís Ferreira, 2022. "Manufacturing and Management Paradigms, Methods and Tools for Sustainable Industry 4.0-Oriented Manufacturing Systems," Sustainability, MDPI, vol. 14(3), pages 1-5, January.
    18. Won, Jeong Yeon & Park, Min Jae, 2020. "Smart factory adoption in small and medium-sized enterprises: Empirical evidence of manufacturing industry in Korea," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    19. Zeba, Gordana & Dabić, Marina & Čičak, Mirjana & Daim, Tugrul & Yalcin, Haydar, 2021. "Technology mining: Artificial intelligence in manufacturing," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    20. Han, Linlin & Shan, Zidan & Lei, Ming & Long, Suwan(Cheng), 2024. "A comparative study of international and Chinese digitization from the perspective of mapping knowledge domains," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 93-113.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1221-:d:730304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.