IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16929-d1006132.html
   My bibliography  Save this article

Evaluating Pedestrian Service of the New Super Diverging Diamond Interchange on Three Case Study Sites in Denver, Colorado

Author

Listed:
  • Muhammad Tahmidul Haq

    (Department of Civil and Architectural Engineering and Construction Management, University of Wyoming, Laramie, WY 82071, USA)

  • Amirarsalan Mehrara Molan

    (Department of Civil Engineering, University of Mississippi, Oxford, MS 38677, USA)

  • Khaled Ksaibati

    (Department of Civil and Architectural Engineering and Construction Management, University of Wyoming, Laramie, WY 82071, USA)

Abstract

Ensuring safe and comfortable conditions for pedestrians necessitates specific strategies at intersections and service interchanges where traffic and pedestrians interact in complex ways with other modes of transportation. This study aims to investigate pedestrian performance at the new Super Diverging Diamond Interchange (Super DDI) using real-world locations (i.e., I-225 and Mississippi Ave, I-25 and 120th Ave, and I-25 and Hampden Ave in Denver, Colorado). Three alternative designs, typical DDI, and two versions of Super DDI were considered to make a reasonable comparison with the existing Conventional Diamond Interchange (CDI). A comprehensive series of simulation models (192 scenarios with 960 runs) were tested using VISSIM and Synchro to analyze pedestrian operation (travel time, number of stops, and waiting time) in various traffic and pedestrian distributions. As one of the primary contributions in this paper, pedestrian safety was evaluated based on a surrogate performance measure called design flag, introduced by the new National Cooperative Highway Research Program (NCHRP-948) guideline. The results indicated that the proposed new Super DDI designs are relatively safe when compared with CDI and DDI. For example, a pedestrian analysis of one of the most popular alternative interchanges, DDI, showed potential for unsafe pedestrian conditions in all aspects.

Suggested Citation

  • Muhammad Tahmidul Haq & Amirarsalan Mehrara Molan & Khaled Ksaibati, 2022. "Evaluating Pedestrian Service of the New Super Diverging Diamond Interchange on Three Case Study Sites in Denver, Colorado," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16929-:d:1006132
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16929/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16929/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan, Chiwei & Jiang, Hai & Xie, Siyang, 2014. "Capacity optimization of an isolated intersection under the phase swap sorting strategy," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 85-106.
    2. Xuan, Yiguang & Daganzo, Carlos F. & Cassidy, Michael J., 2011. "Increasing the capacity of signalized intersections with separate left turn phases," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 769-781, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Abdullah & Nazam Ali & Muhammad Ashraf Javid & Muhammad Waqar Aslam & Charitha Dias, 2023. "Signal-Free Corridor Development and Their Impact on Pedestrians: Insights from Expert and Public Surveys," Sustainability, MDPI, vol. 15(19), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Liying & Liu, Yugang & Li, JiaLi & Qi, Ruiting & Zheng, Shuai & Chen, Bin & Yang, Hongtai, 2020. "Pedestrian crossing design and analysis for symmetric intersections: Efficiency and safety," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 187-206.
    2. Yan Li & Sirui Nan & Xiaolin Gong & Rui Ma, 2019. "A geometric design method for intersections with pre-signal systems using a phase swap sorting strategy," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-22, May.
    3. Chen Zhao & Yulin Chang & Peng Zhang, 2018. "Coordinated Control Model of Main-Signal and Pre-Signal for Intersections with Dynamic Waiting Lanes," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    4. Zhao, Jing & Yan, Jiachao & Wang, Jiawen, 2019. "Analysis of alternative treatments for left turn bicycles at tandem intersections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 314-328.
    5. Wei Wu & Wanjing Ma & Kejun Long & Heping Zhou & Yi Zhang, 2016. "Designing Sustainable Public Transportation: Integrated Optimization of Bus Speed and Holding Time in a Connected Vehicle Environment," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    6. Yiming Bie & Zhiyuan Liu & Yinhai Wang, 2017. "A real-time traffic control method for the intersection with pre-signals under the phase swap sorting strategy," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    7. Yongtao Zheng & Xuedong Hua & Wei Wang & Jialiang Xiao & Dongya Li, 2020. "Analysis of a Signalized Intersection with Dynamic Use of the Left-Turn Lane for Opposite through Traffic," Sustainability, MDPI, vol. 12(18), pages 1-29, September.
    8. Yang Shao & Zhongbin Luo & Huan Wu & Xueyan Han & Binghong Pan & Shangru Liu & Christian G. Claudel, 2020. "Evaluation of Two Improved Schemes at Non-Aligned Intersections Affected by a Work Zone with an Entropy Method," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    9. Li, Xiang & Sun, Jian-Qiao, 2016. "Effects of turning and through lane sharing on traffic performance at intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 622-640.
    10. Wu, Jiaming & Kulcsár, Balázs & Ahn, Soyoung & Qu, Xiaobo, 2020. "Emergency vehicle lane pre-clearing: From microscopic cooperation to routing decision making," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 223-239.
    11. Bo Feng & Mingming Zheng & Yan Liu, 2023. "Optimization of Signal Timing for the Contraflow Left-Turn Lane at Signalized Intersections Based on Delay Analysis," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    12. Tan, Jiyuan & Li, Li & Li, Zhiheng & Zhang, Yi, 2013. "Distribution models for start-up lost time and effective departure flow rate," Transportation Research Part A: Policy and Practice, Elsevier, vol. 51(C), pages 1-11.
    13. Yi Wang & Jian Rong & Chenjing Zhou & Xin Chang & Siyang Liu, 2020. "An Analysis of the Interactions between Adjustment Factors of Saturation Flow Rates at Signalized Intersections," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    14. Jixiang Wang & Haiyang Yu & Siqi Chen & Zechang Ye & Yilong Ren, 2023. "Heterogeneous Traffic Flow Signal Control and CAV Trajectory Optimization Based on Pre-Signal Lights and Dedicated CAV Lanes," Sustainability, MDPI, vol. 15(21), pages 1-20, October.
    15. Wang, Tao & Yuan, Zijian & Zhang, Yuanshu & Zhang, Jing & Tian, Junfang, 2023. "A driving guidance strategy with pre-stop line at signalized intersection: Collaborative optimization of capacity and fuel consumption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    16. Ma, Wanjing & Liu, Ye & Zhao, Jing & Wu, Ning, 2017. "Increasing the capacity of signalized intersections with left-turn waiting areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 181-196.
    17. Huang, Jian & Hu, Mao-Bin & Jiang, Rui & Li, Ming, 2018. "Effect of pre-signals in a Manhattan-like urban traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 71-85.
    18. Yan, Chiwei & Jiang, Hai & Xie, Siyang, 2014. "Capacity optimization of an isolated intersection under the phase swap sorting strategy," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 85-106.
    19. Guler, S. Ilgin & Cassidy, Michael J., 2012. "Strategies for sharing bottleneck capacity among buses and cars," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1334-1345.
    20. Saha, Arpita & Chakraborty, Souvik & Chandra, Satish & Ghosh, Indrajit, 2018. "Kriging based saturation flow models for traffic conditions in Indian cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 38-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16929-:d:1006132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.