IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15795-d986112.html
   My bibliography  Save this article

The Material Flow and Stability Performance of the Anaerobic Digestion of Pig Manure after (Hyper)-Thermophilic Hydrolysis Is Introduced: A Comparison with a Single-Stage Process

Author

Listed:
  • Min Lin

    (College of Engineering, China Agricultural University, Beijing 100083, China)

  • Aijie Wang

    (Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing 100085, China)

  • Wei Qiao

    (College of Engineering, China Agricultural University, Beijing 100083, China
    Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing 100085, China)

  • Simon M. Wandera

    (Department of Civil, Construction & Environmental Engineering, Jomo Kenyatta University of Agriculture & Technology, Nairobi P.O. Box 62000, Kenya)

  • Jiahao Zhang

    (College of Engineering, China Agricultural University, Beijing 100083, China)

  • Renjie Dong

    (College of Engineering, China Agricultural University, Beijing 100083, China)

Abstract

Slow hydrolysis persistently affects the anaerobic digestion of animal manure. Thermophilic and hyper-thermophilic treatments introduced into a two-stage anaerobic process treating pig manure were investigated, with a single-stage mesophilic process as a control. The results from the 100-day experiment showed the thermophilic-mesophilic system had the highest removal efficiency of volatile solids at 60.8%, 18% higher than the single-stage process. The thermophilic and hyper-thermophilic hydrolysis reactors contributed 23.5% and 21.7% solubilization of chemical oxygen demand (COD), respectively. The hydrolysis efficiency achieved in the single process was 49.7%, which was lower than the hydrolysis in the two-stage processes. Approximately 60% of COD was distributed in the solid fraction in the first stage, and more than half of the particle COD continued to hydrolyze in the subsequent second stage. The mass balance of COD and volatile solids removal performance illustrated the advantages of the temperature-phased process. Comparatively, the three mesophilic reactors all had strong stability.

Suggested Citation

  • Min Lin & Aijie Wang & Wei Qiao & Simon M. Wandera & Jiahao Zhang & Renjie Dong, 2022. "The Material Flow and Stability Performance of the Anaerobic Digestion of Pig Manure after (Hyper)-Thermophilic Hydrolysis Is Introduced: A Comparison with a Single-Stage Process," Sustainability, MDPI, vol. 14(23), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15795-:d:986112
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15795/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15795/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Li-Jie & Qin, Yu & Hojo, Toshimasa & Li, Yu-You, 2015. "Upgrading of anaerobic digestion of waste activated sludge by temperature-phased process with recycle," Energy, Elsevier, vol. 87(C), pages 381-389.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Algapani, Dalal E. & Qiao, Wei & Ricci, Marina & Bianchi, Davide & M. Wandera, Simon & Adani, Fabrizio & Dong, Renjie, 2019. "Bio-hydrogen and bio-methane production from food waste in a two-stage anaerobic digestion process with digestate recirculation," Renewable Energy, Elsevier, vol. 130(C), pages 1108-1115.
    2. Musa Manga & Christian Aragón-Briceño & Panagiotis Boutikos & Swaib Semiyaga & Omotunde Olabinjo & Chimdi C. Muoghalu, 2023. "Biochar and Its Potential Application for the Improvement of the Anaerobic Digestion Process: A Critical Review," Energies, MDPI, vol. 16(10), pages 1-23, May.
    3. Theresa Menzel & Peter Neubauer & Stefan Junne, 2020. "Role of Microbial Hydrolysis in Anaerobic Digestion," Energies, MDPI, vol. 13(21), pages 1-29, October.
    4. Qin, Yu & Wu, Jing & Xiao, Benyi & Cong, Ming & Hojo, Toshimasa & Cheng, Jun & Li, Yu-You, 2019. "Strategy of adjusting recirculation ratio for biohythane production via recirculated temperature-phased anaerobic digestion of food waste," Energy, Elsevier, vol. 179(C), pages 1235-1245.
    5. Zhou, Aijuan & Zhang, Jiaguang & Varrone, Cristiano & Wen, Kaili & Wang, Guoying & Liu, Wenzong & Wang, Aijie & Yue, Xiuping, 2017. "Process assessment associated to microbial community response provides insight on possible mechanism of waste activated sludge digestion under typical chemical pretreatments," Energy, Elsevier, vol. 137(C), pages 457-467.
    6. Wang, Ruikun & Zhao, Zhenghui & Liu, Jianzhong & Lv, Yukun & Ye, Xuemin, 2016. "Enhancing the storage stability of petroleum coke slurry by producing biogas from sludge fermentation," Energy, Elsevier, vol. 113(C), pages 319-327.
    7. Chen, Hong & Yi, Hao & Li, Hechao & Guo, Xuesong & Xiao, Benyi, 2020. "Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: Performance, energy balance and, enhancement mechanism," Renewable Energy, Elsevier, vol. 147(P1), pages 2409-2416.
    8. Nie, Yulun & Chen, Rong & Tian, Xike & Li, Yu-You, 2017. "Impact of water characteristics on the bioenergy recovery from sewage treatment by anaerobic membrane bioreactor via a comprehensive study on the response of microbial community and methanogenic activ," Energy, Elsevier, vol. 139(C), pages 459-467.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15795-:d:986112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.