IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p14766-d967749.html
   My bibliography  Save this article

Cogeneration Systems Performance Analysis as a Sustainable Clean Energy and Water Source Based on Energy Hubs Using the Archimedes Optimization Algorithm

Author

Listed:
  • Magda I. El-Afifi

    (Electrical Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
    Nile Higher Institute of Engineering and Technology, Mansoura 35511, Egypt)

  • Magdi M. Saadawi

    (Electrical Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt)

  • Abdelfattah A. Eladl

    (Electrical Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt)

Abstract

Different energy requirements of the residential sector are varied, such as electricity, heating, cooling, water, etc., and these necessities are met by multi-energy systems using various energy sources and converters. In this paper, an optimal day-ahead operation of a large residential demand sector is presented based on the energy hub (EH) model with combined heat and power (CHP) as a cogeneration system. The purpose of the optimization is to maximize social welfare (SW) and minimize environmental emissions subjected to numerous technical constraints. To explore the effectiveness of the proposed model, real cases were studied and results were analyzed. Moreover, to evaluate the efficiency of the proposed methodology, the Archimedes optimization algorithm (AOA) is implemented for optimizing the EH system. The performance of the AOA is compared with the genetic algorithm, and the results depict that the AOA is better in terms of convergence speed and global search ability. Implementation of the proposed framework shows that the total SW is increased by 27.44% and environmental emissions are reduced by 18.36% compared to the base case without the EH. Additionally, there is 512.26 MWh and 149.4 m 3 as a surplus in the electricity and water that are sold to every network, respectively.

Suggested Citation

  • Magda I. El-Afifi & Magdi M. Saadawi & Abdelfattah A. Eladl, 2022. "Cogeneration Systems Performance Analysis as a Sustainable Clean Energy and Water Source Based on Energy Hubs Using the Archimedes Optimization Algorithm," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14766-:d:967749
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/14766/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/14766/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mostafavi Sani, Mostafa & Mostafavi Sani, Hossein & Fowler, Michael & Elkamel, Ali & Noorpoor, Alireza & Ghasemi, Amir, 2022. "Optimal energy hub development to supply heating, cooling, electricity and freshwater for a coastal urban area taking into account economic and environmental factors," Energy, Elsevier, vol. 238(PB).
    2. Hasankhani, Arezoo & Hakimi, Seyed Mehdi, 2021. "Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market," Energy, Elsevier, vol. 219(C).
    3. Najafi, Arsalan & Falaghi, Hamid & Contreras, Javier & Ramezani, Maryam, 2016. "Medium-term energy hub management subject to electricity price and wind uncertainty," Applied Energy, Elsevier, vol. 168(C), pages 418-433.
    4. Zafarani, Hamidreza & Taher, Seyed Abbas & Shahidehpour, Mohammad, 2020. "Robust operation of a multicarrier energy system considering EVs and CHP units," Energy, Elsevier, vol. 192(C).
    5. Wang, Jiangjiang & Liu, Yi & Ren, Fukang & Lu, Shuaikang, 2020. "Multi-objective optimization and selection of hybrid combined cooling, heating and power systems considering operational flexibility," Energy, Elsevier, vol. 197(C).
    6. Mostafavi Sani, Mostafa & Noorpoor, Alireza & Shafie-Pour Motlagh, Majid, 2019. "Optimal model development of energy hub to supply water, heating and electrical demands of a cement factory," Energy, Elsevier, vol. 177(C), pages 574-592.
    7. Davatgaran, Vahid & Saniei, Mohsen & Mortazavi, Seyed Saeidollah, 2018. "Optimal bidding strategy for an energy hub in energy market," Energy, Elsevier, vol. 148(C), pages 482-493.
    8. Bilgen, Selçuk & Keleş, Sedat & Sarıkaya, İkbal & Kaygusuz, Kamil, 2015. "A perspective for potential and technology of bioenergy in Turkey: Present case and future view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 228-239.
    9. Neves, Diana & Silva, Carlos A., 2014. "Modeling the impact of integrating solar thermal systems and heat pumps for domestic hot water in electric systems – The case study of Corvo Island," Renewable Energy, Elsevier, vol. 72(C), pages 113-124.
    10. Xu, Xiao & Hu, Weihao & Liu, Wen & Du, Yuefang & Huang, Rui & Huang, Qi & Chen, Zhe, 2021. "Look-ahead risk-constrained scheduling for an energy hub integrated with renewable energy," Applied Energy, Elsevier, vol. 297(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahyar Lasemi Imeni & Mohammad Sadegh Ghazizadeh & Mohammad Ali Lasemi & Zhenyu Yang, 2023. "Optimal Scheduling of a Hydrogen-Based Energy Hub Considering a Stochastic Multi-Attribute Decision-Making Approach," Energies, MDPI, vol. 16(2), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    3. Mostafavi Sani, Mostafa & Mostafavi Sani, Hossein & Fowler, Michael & Elkamel, Ali & Noorpoor, Alireza & Ghasemi, Amir, 2022. "Optimal energy hub development to supply heating, cooling, electricity and freshwater for a coastal urban area taking into account economic and environmental factors," Energy, Elsevier, vol. 238(PB).
    4. Aslani, Mehrdad & Mashayekhi, Mehdi & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "Robust optimal operation of energy hub incorporating integrated thermal and electrical demand response programs under various electric vehicle charging modes," Applied Energy, Elsevier, vol. 321(C).
    5. Arsalan Najafi & Mousa Marzband & Behnam Mohamadi-Ivatloo & Javier Contreras & Mahdi Pourakbari-Kasmaei & Matti Lehtonen & Radu Godina, 2019. "Uncertainty-Based Models for Optimal Management of Energy Hubs Considering Demand Response," Energies, MDPI, vol. 12(8), pages 1-20, April.
    6. Rafael Poppenborg & Malte Chlosta & Johannes Ruf & Christian Hotz & Clemens Düpmeier & Thomas Kolb & Veit Hagenmeyer, 2023. "Energy Hub Gas: A Modular Setup for the Evaluation of Local Flexibility and Renewable Energy Carriers Provision," Energies, MDPI, vol. 16(6), pages 1-16, March.
    7. Mostafavi Sani, Mostafa & Noorpoor, Alireza & Shafie-Pour Motlagh, Majid, 2019. "Optimal model development of energy hub to supply water, heating and electrical demands of a cement factory," Energy, Elsevier, vol. 177(C), pages 574-592.
    8. Yang, Jie & Ma, Tieding & Ma, Kai & Yang, Bo & Guerrero, Josep M. & Liu, Zhixin, 2021. "Trading mechanism and pricing strategy of integrated energy systems based on credit rating and Bayesian game," Energy, Elsevier, vol. 232(C).
    9. Wang, Yuwei & Tang, Liu & Yang, Yuanjuan & Sun, Wei & Zhao, Huiru, 2020. "A stochastic-robust coordinated optimization model for CCHP micro-grid considering multi-energy operation and power trading with electricity markets under uncertainties," Energy, Elsevier, vol. 198(C).
    10. Lingmin, Chen & Jiekang, Wu & Fan, Wu & Huiling, Tang & Changjie, Li & Yan, Xiong, 2020. "Energy flow optimization method for multi-energy system oriented to combined cooling, heating and power," Energy, Elsevier, vol. 211(C).
    11. Qiu, Dawei & Dong, Zihang & Zhang, Xi & Wang, Yi & Strbac, Goran, 2022. "Safe reinforcement learning for real-time automatic control in a smart energy-hub," Applied Energy, Elsevier, vol. 309(C).
    12. Liao, Zitian & Liao, Xiaoqun & Khakichi, Aroos, 2024. "Optimum planning of energy hub with participation in electricity market and heat markets and application of integrated load response program with improved particle swarm algorithm," Energy, Elsevier, vol. 286(C).
    13. Yuwei Wang & Yuanjuan Yang & Liu Tang & Wei Sun & Huiru Zhao, 2019. "A Stochastic-CVaR Optimization Model for CCHP Micro-Grid Operation with Consideration of Electricity Market, Wind Power Accommodation and Multiple Demand Response Programs," Energies, MDPI, vol. 12(20), pages 1-33, October.
    14. Mancarella, Pierluigi & Chicco, Gianfranco & Capuder, Tomislav, 2018. "Arbitrage opportunities for distributed multi-energy systems in providing power system ancillary services," Energy, Elsevier, vol. 161(C), pages 381-395.
    15. Rakipour, Davood & Barati, Hassan, 2019. "Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response," Energy, Elsevier, vol. 173(C), pages 384-399.
    16. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    17. Yu, Min Gyung & Pavlak, Gregory S., 2023. "Risk-aware sizing and transactive control of building portfolios with thermal energy storage," Applied Energy, Elsevier, vol. 332(C).
    18. Liu, Qian & Li, Wanjun & Zhao, Zhen & Jian, Gan, 2024. "Optimal operation of coordinated multi-carrier energy hubs for integrated electricity and gas networks," Energy, Elsevier, vol. 288(C).
    19. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    20. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14766-:d:967749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.