IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p13933-d954219.html
   My bibliography  Save this article

Analysis of the Ecosystem Characteristics and Ecological Carrying Capacity of the Main Commercial Fish in the Artificial Reef Ecosystem in Laizhou Bay Using the Ecopath Model

Author

Listed:
  • Yang Yuan

    (College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
    CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China)

  • Jie Feng

    (CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China)

  • Weiwei Xian

    (CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China)

  • Hui Zhang

    (CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

In this study, we constructed an Ecopath model of the artificial reef ecosystem in Laizhou Bay, with special emphasis on the stock enhancement opportunities. Laizhou Bay is the largest semi-enclosed bay in the Bohai Sea, China, where multiple factors, especially overfishing, have led to the decline of many commercial marine fish stocks. Artificial oyster reefs were developed in 2011 in this region, providing shelter, feeding, and breeding sites for marine organisms. Additionally, stock enhancement by release can be used to replenish fishery species resources. Ad hoc stock enhancement, however, can fail to bring economic benefits and may impact ecosystem stability. Therefore, we estimated the ecological carrying capacity of the three main economic fish species in Laizhou Bay, including black rockfish ( Sebastes schlegelii ), fat greening ( Hexagrammos otakii ), and Chinese seabass ( Lateolabrax maculatus ) before release to ensure the sustainable use of fishery resources. The Ecopath model in Laizhou Bay was divided into 17 functional groups based on commercial relevance, dietary similarity, and habitat needs of the species present in the area. The ecological parameters, such as the ratio of total primary productivity to total respiration (1.205), connectance index (0.207), and system omnivory index (0.090) indicated that the artificial reef ecosystem in Laizhou Bay has a relatively simple food web structure. The ecological carrying capacities of S. schlegelii , H. otakii , and L. maculatus were assessed at 0.4676 t/km 2 , 0.5472 t/km 2 , and 0.3275 t/km 2 , respectively. This study provides a reference for the formulation of fishery strategies to maintain ecosystem stability and biodiversity and to maximize fishery returns and sustainability in Laizhou Bay.

Suggested Citation

  • Yang Yuan & Jie Feng & Weiwei Xian & Hui Zhang, 2022. "Analysis of the Ecosystem Characteristics and Ecological Carrying Capacity of the Main Commercial Fish in the Artificial Reef Ecosystem in Laizhou Bay Using the Ecopath Model," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13933-:d:954219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/13933/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/13933/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christensen, V. & Pauly, D. (eds.), 1993. "Trophic models of aquatic ecosystems," Monographs, The WorldFish Center, number 8432, April.
    2. Link, Jason S., 2010. "Adding rigor to ecological network models by evaluating a set of pre-balance diagnostics: A plea for PREBAL," Ecological Modelling, Elsevier, vol. 221(12), pages 1580-1591.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Booth, Shawn & Walters, William J & Steenbeek, Jeroen & Christensen, Villy & Charmasson, Sabine, 2020. "An Ecopath with Ecosim model for the Pacific coast of eastern Japan: Describing the marine environment and its fisheries prior to the Great East Japan earthquake," Ecological Modelling, Elsevier, vol. 428(C).
    2. Fourriére, Manon & Alvarado, Juan José & Cortés, Jorge & Taylor, Marc H. & Ayala-Bocos, Arturo & Azofeifa-Solano, Juan Carlos & Arauz, Randall & Heidemeyer, Maike & López-Garro, Andrés & Zanella, Ilen, 2019. "Energy flow structure and role of keystone groups in shallow water environments in Isla del Coco, Costa Rica, Eastern Tropical Pacific," Ecological Modelling, Elsevier, vol. 396(C), pages 74-85.
    3. Nuttall, M.A. & Jordaan, A. & Cerrato, R.M. & Frisk, M.G., 2011. "Identifying 120 years of decline in ecosystem structure and maturity of Great South Bay, New York using the Ecopath modelling approach," Ecological Modelling, Elsevier, vol. 222(18), pages 3335-3345.
    4. Heymans, Johanna Jacomina & Coll, Marta & Link, Jason S. & Mackinson, Steven & Steenbeek, Jeroen & Walters, Carl & Christensen, Villy, 2016. "Best practice in Ecopath with Ecosim food-web models for ecosystem-based management," Ecological Modelling, Elsevier, vol. 331(C), pages 173-184.
    5. Byron, Carrie & Link, Jason & Costa-Pierce, Barry & Bengtson, David, 2011. "Calculating ecological carrying capacity of shellfish aquaculture using mass-balance modeling: Narragansett Bay, Rhode Island," Ecological Modelling, Elsevier, vol. 222(10), pages 1743-1755.
    6. Ofir, E. & Gal, G. & Goren, M. & Shapiro, J. & Spanier, E., 2016. "Detecting changes to the functioning of a lake ecosystem following a regime shift based on static food-web models," Ecological Modelling, Elsevier, vol. 320(C), pages 145-157.
    7. Perryman, Holly A. & Tarnecki, Joseph H. & Grüss, Arnaud & Babcock, Elizabeth A. & Sagarese, Skyler R. & Ainsworth, Cameron H. & Gray DiLeone, Alisha M., 2020. "A revised diet matrix to improve the parameterization of a West Florida Shelf Ecopath model for understanding harmful algal bloom impacts," Ecological Modelling, Elsevier, vol. 416(C).
    8. Natugonza, Vianny & Ogutu-Ohwayo, Richard & Musinguzi, Laban & Kashindye, Benedicto & Jónsson, Steingrímur & Valtysson, Hreidar Thor, 2016. "Exploring the structural and functional properties of the Lake Victoria food web, and the role of fisheries, using a mass balance model," Ecological Modelling, Elsevier, vol. 342(C), pages 161-174.
    9. Zetina-Rejón, Manuel J. & Cabrera-Neri, Erika & López-Ibarra, Gladis A. & Arcos-Huitrón, N. Enrique & Christensen, Villy, 2015. "Trophic modeling of the continental shelf ecosystem outside of Tabasco, Mexico: A network and modularity analysis," Ecological Modelling, Elsevier, vol. 313(C), pages 314-324.
    10. Milessi, Andrés C. & Danilo, Calliari & Laura, Rodríguez-Graña & Daniel, Conde & Javier, Sellanes & Rodríguez-Gallego, Lorena, 2010. "Trophic mass-balance model of a subtropical coastal lagoon, including a comparison with a stable isotope analysis of the food-web," Ecological Modelling, Elsevier, vol. 221(24), pages 2859-2869.
    11. Moreau, J. & Palomares, M.L.D. & Torres, F.S.B., Jr. & Pauly, D., 1995. "Atlas demographique des populations de poissons d'eau douce d'Afrique," Monographs, The WorldFish Center, number 10441, April.
    12. Jia, Peiqiao & Hu, Menghong & Hu, Zhongjun & Liu, Qigen & Wu, Zhen, 2012. "Modeling trophic structure and energy flows in a typical macrophyte dominated shallow lake using the mass balanced model," Ecological Modelling, Elsevier, vol. 233(C), pages 26-30.
    13. Díaz López, Bruno & Bunke, Mandy & Bernal Shirai, Julia Andrea, 2008. "Marine aquaculture off Sardinia Island (Italy): Ecosystem effects evaluated through a trophic mass-balance model," Ecological Modelling, Elsevier, vol. 212(3), pages 292-303.
    14. Rochette, S. & Lobry, J. & Lepage, M. & Boët, Ph., 2009. "Dealing with uncertainty in qualitative models with a semi-quantitative approach based on simulations. Application to the Gironde estuarine food web (France)," Ecological Modelling, Elsevier, vol. 220(2), pages 122-132.
    15. Christensen, Villy & de la Puente, Santiago & Sueiro, Juan Carlos & Steenbeek, Jeroen & Majluf, Patricia, 2014. "Valuing seafood: The Peruvian fisheries sector," Marine Policy, Elsevier, vol. 44(C), pages 302-311.
    16. Tomczak, M.T. & Niiranen, S. & Hjerne, O. & Blenckner, T., 2012. "Ecosystem flow dynamics in the Baltic Proper—Using a multi-trophic dataset as a basis for food–web modelling," Ecological Modelling, Elsevier, vol. 230(C), pages 123-147.
    17. Tesfaye, Gashaw & Wolff, Matthias, 2018. "Modeling trophic interactions and the impact of an introduced exotic carp species in the Rift Valley Lake Koka, Ethiopia," Ecological Modelling, Elsevier, vol. 378(C), pages 26-36.
    18. Rosas-Luis, R. & Salinas-Zavala, C.A. & Koch, V. & Luna, P. Del Monte & Morales-Zárate, M.V., 2008. "Importance of jumbo squid Dosidicus gigas (Orbigny, 1835) in the pelagic ecosystem of the central Gulf of California," Ecological Modelling, Elsevier, vol. 218(1), pages 149-161.
    19. Han, Jeong-Ho & Kumar, Hema K. & Lee, Jae Hoon & Zhang, Chang-Ik & Kim, Se-Wha & Lee, Jung-Ho & Kim, Sang Don & An, Kwang-Guk, 2011. "Integrative trophic network assessments of a lentic ecosystem by key ecological approaches of water chemistry, trophic guilds, and ecosystem health assessments along with an ECOPATH model," Ecological Modelling, Elsevier, vol. 222(19), pages 3457-3472.
    20. Ortiz, Marco & Berrios, Fernando & Campos, Leonardo & Uribe, Roberto & Ramirez, Alejandro & Hermosillo-Núñez, Brenda & González, Jorge & Rodriguez-Zaragoza, Fabián, 2015. "Mass balanced trophic models and short-term dynamical simulations for benthic ecological systems of Mejillones and Antofagasta bays (SE Pacific): Comparative network structure and assessment of human ," Ecological Modelling, Elsevier, vol. 309, pages 153-162.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13933-:d:954219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.