IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12810-d935836.html
   My bibliography  Save this article

Design and Optimization for a New Locomotive Power Battery Box

Author

Listed:
  • Sihui Dong

    (School of Traffic and Transportation Engineering, Dalian Jiaotong University, Dalian 116028, China)

  • Jinxiao Lv

    (School of Traffic and Transportation Engineering, Dalian Jiaotong University, Dalian 116028, China)

  • Kang Wang

    (School of Traffic and Transportation Engineering, Dalian Jiaotong University, Dalian 116028, China
    College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Wanjing Li

    (School of Traffic and Transportation Engineering, Dalian Jiaotong University, Dalian 116028, China)

  • Yining Tian

    (School of Traffic and Transportation Engineering, Dalian Jiaotong University, Dalian 116028, China)

Abstract

To solve the disadvantages of the low protection grade, high weight, and high cost of the existing locomotive power battery system, this study optimizes the existing scheme and introduces the design concept of two-stage protection. The purpose of the research is to improve the protection level of the battery pack to IP68, to optimize the sheet metal power battery box structure into a more lightweight frame structure, to simplify the cooling mode of the battery pack for natural air cooling, and to improve the battery protection level and maintain the heat exchange capability. In the course of the study, a design scheme with a two-stage protection function is proposed. The numerical model analyzes the self-load, transverse load, longitudinal load, mode, and fatigue, and optimizes the layout of the power tank cell. The optimized box model was physically tested and economically compared. The results show that: (1) The maximum load stress is 128.4 MPa, which is lower than 235 MPa, the ultimate stress of the box material, and the fatigue factor of the frame box structure is 3.75, which is higher than 1.0, and it is not prone to fatigue damage. (2) Under the low-temperature heating condition, the overall temperature rise of the battery pack is 4.3 °C, which is greater than 2.3 °C under the air conditioning heat dissipation scheme. Under the high-temperature charging condition, the overall temperature rise of the battery pack is 2.0 °C, and the temperature value is the same as the temperature rise under the air conditioning cooling scheme. Under the high-temperature discharge condition, the overall temperature rise of the battery pack is 3.0 °C, and the temperature value is greater than 2.1 °C under the air conditioning heat dissipation scheme. At the same time, the temperature rise under the three working conditions is less than the 15 °C stipulated in the JS175-201805 standard. The simulation results show that the natural airflow and two-stage protection structure can provide a good temperature environment for the power battery to work. (3) The optimized box prototype can effectively maintain the structural integrity of the battery cell in the box in extreme test cases, reducing the probability of battery fire caused by battery cell deformation. (4) The power battery adopts a two-stage protection design under the battery power level, which can simultaneously achieve battery protection and prevent thermal runaway, while reducing costs. The research results provide a new concept for the design of a locomotive power battery system. (5) The weight of the optimized scheme is 2020 kg, and the original scheme is 2470 kg; thus, the reduction in weight is 450 kg. Meanwhile, the volume of the optimized scheme is 1.49 m 3 , and the original scheme is 1.93 m 3 ; thus, the reduction in volume is 0.44 m 3 .

Suggested Citation

  • Sihui Dong & Jinxiao Lv & Kang Wang & Wanjing Li & Yining Tian, 2022. "Design and Optimization for a New Locomotive Power Battery Box," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12810-:d:935836
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12810/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12810/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chunyu Zhao & Beile Zhang & Yuanming Zheng & Shunyuan Huang & Tongtong Yan & Xiufang Liu, 2020. "Hybrid Battery Thermal Management System in Electrical Vehicles: A Review," Energies, MDPI, vol. 13(23), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raja Mazuir Raja Ahsan Shah & Mansour Al Qubeissi & Hazem Youssef & Hakan Serhad Soyhan, 2023. "Battery Thermal Management: An Application to Petrol Hybrid Electric Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    2. Sørensen, Åse Lekang & Ludvigsen, Bjørn & Andresen, Inger, 2023. "Grid-connected cabin preheating of Electric Vehicles in cold climates – A non-flexible share of the EV energy use," Applied Energy, Elsevier, vol. 341(C).
    3. Mohammad Joula & Savas Dilibal & Gonca Mafratoglu & Josiah Owusu Danquah & Mohammad Alipour, 2022. "Hybrid Battery Thermal Management System with NiTi SMA and Phase Change Material (PCM) for Li-ion Batteries," Energies, MDPI, vol. 15(12), pages 1-16, June.
    4. Pius Victor Chombo & Yossapong Laoonual & Somchai Wongwises, 2021. "Lessons from the Electric Vehicle Crashworthiness Leading to Battery Fire," Energies, MDPI, vol. 14(16), pages 1-21, August.
    5. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ma, Binjian, 2023. "A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management," Energy, Elsevier, vol. 263(PE).
    6. Zhang, Nan & Lu, Yiji & Ouderji, Zahra Hajabdollahi & Yu, Zhibin, 2023. "Review of heat pump integrated energy systems for future zero-emission vehicles," Energy, Elsevier, vol. 273(C).
    7. Dmitry V. Pelegov & Jean-Jacques Chanaron, 2022. "Electric Car Market Analysis Using Open Data: Sales, Volatility Assessment, and Forecasting," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    8. Moeed Rabiei & Ayat Gharehghani & Soheil Saeedipour & Amin Mahmoudzadeh Andwari & Juho Könnö, 2023. "Proposing a Hybrid BTMS Using a Novel Structure of a Microchannel Cold Plate and PCM," Energies, MDPI, vol. 16(17), pages 1-20, August.
    9. Thomas Imre Cyrille Buidin & Florin Mariasiu, 2021. "Battery Thermal Management Systems: Current Status and Design Approach of Cooling Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    10. Arjan F. Kirkels & Jeroen Bleker & Henny A. Romijn, 2022. "Ready for the Road? A Socio-Technical Investigation of Fire Safety Improvement Options for Lithium-Ion Traction Batteries," Energies, MDPI, vol. 15(9), pages 1-22, May.
    11. Muhsin Kılıç & Sevgül Gamsız & Zehra Nihan Alınca, 2023. "Comparative Evaluation and Multi-Objective Optimization of Cold Plate Designed for the Lithium-Ion Battery Pack of an Electrical Pickup by Using Taguchi–Grey Relational Analysis," Sustainability, MDPI, vol. 15(16), pages 1-28, August.
    12. Lena Spitthoff & Paul R. Shearing & Odne Stokke Burheim, 2021. "Temperature, Ageing and Thermal Management of Lithium-Ion Batteries," Energies, MDPI, vol. 14(5), pages 1-30, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12810-:d:935836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.