Economic Planning of Energy System Equipment
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
- Zhang, Yagang & Zhao, Yunpeng & Shen, Xiaoyu & Zhang, Jinghui, 2022. "A comprehensive wind speed prediction system based on Monte Carlo and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 305(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sala-Garrido, Ramon & Mocholi-Arce, Manuel & Maziotis, Alexandros & Molinos-Senante, María, 2023. "The carbon and production performance of water utilities: Evidence from the English and Welsh water industry," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 292-300.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Biao Li & Pengfei Wang & Peng Sun & Rui Meng & Jun Zeng & Guanghui Liu, 2023. "A Model for Determining the Optimal Decommissioning Interval of Energy Equipment Based on the Whole Life Cycle Cost," Sustainability, MDPI, vol. 15(6), pages 1-28, March.
- Zhang, Yagang & Pan, Zhiya & Wang, Hui & Wang, Jingchao & Zhao, Zheng & Wang, Fei, 2023. "Achieving wind power and photovoltaic power prediction: An intelligent prediction system based on a deep learning approach," Energy, Elsevier, vol. 283(C).
- Xing, Qianyi & Huang, Xiaojia & Wang, Kang & Wang, Jianzhou & Wang, Shuai, 2025. "MIG-EWPFS: An ensemble probabilistic wind speed forecasting system integrating multi-dimensional feature extraction, hybrid quantile regression, and Knee improved multi-objective optimization," Energy, Elsevier, vol. 324(C).
- Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
- Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
- Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
- Geng, Donghan & Zhang, Yongkang & Zhang, Yunlong & Qu, Xingchuang & Li, Longfei, 2025. "A hybrid model based on CapSA-VMD-ResNet-GRU-attention mechanism for ultra-short-term and short-term wind speed prediction," Renewable Energy, Elsevier, vol. 240(C).
- Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
- Ding, Lili & Zhao, Zhongchao & Wang, Lei, 2022. "Probability density forecasts for natural gas demand in China: Do mixed-frequency dynamic factors matter?," Applied Energy, Elsevier, vol. 312(C).
- Kuang, Zhonghong & Chen, Qi & Yu, Yang, 2022. "Assessing the CO2-emission risk due to wind-energy uncertainty," Applied Energy, Elsevier, vol. 310(C).
- Zhang, Yagang & Kong, Xue & Wang, Jingchao & Wang, Hui & Cheng, Xiaodan, 2024. "Wind power forecasting system with data enhancement and algorithm improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
- Lianhong Chen & Chao Wang & Rigang Zhong & Jin Wang & Zheng Zhao, 2022. "Intelligent Modeling of the Incineration Process in Waste Incineration Power Plant Based on Deep Learning," Energies, MDPI, vol. 15(12), pages 1-12, June.
- Asim Kumar Sarker & Abul Kalam Azad & Mohammad G. Rasul & Arun Teja Doppalapudi, 2023. "Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review," Energies, MDPI, vol. 16(3), pages 1-17, February.
- Yan Gao & Baifu Cao & Wenhao Yu & Lu Yi & Fengqi Guo, 2024. "Short-Term Wind Speed Prediction for Bridge Site Area Based on Wavelet Denoising OOA-Transformer," Mathematics, MDPI, vol. 12(12), pages 1-22, June.
- Wang, Han & Li, Yunzhou & Yan, Jie & Xiao, Wuyang & Han, Shuang & Liu, Yongqian, 2025. "A novel minute-scale prediction method of incoming wind conditions with limited LiDAR data," Renewable Energy, Elsevier, vol. 240(C).
- Niu, Dongxiao & Sun, Lijie & Yu, Min & Wang, Keke, 2022. "Point and interval forecasting of ultra-short-term wind power based on a data-driven method and hybrid deep learning model," Energy, Elsevier, vol. 254(PA).
- Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
- Wang, Chao & Lin, Hong & Yang, Ming & Fu, Xiaoling & Yuan, Yue & Wang, Zewei, 2024. "A novel chaotic time series wind power point and interval prediction method based on data denoising strategy and improved coati optimization algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
- Kalim Ullah & Taimoor Ahmad Khan & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Basem Alamri & Faheem Ali & Sajjad Ali & Sheraz Khan, 2022. "Demand Side Management Strategy for Multi-Objective Day-Ahead Scheduling Considering Wind Energy in Smart Grid," Energies, MDPI, vol. 15(19), pages 1-14, September.
- Yang, Shixi & Zhou, Jiaxuan & Gu, Xiwen & Mei, Yiming & Duan, Jiangman, 2024. "A comprehensive framework of the decomposition-based hybrid method for ultra-short-term wind power forecasting with on-site application," Energy, Elsevier, vol. 313(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11464-:d:913774. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11464-d913774.html